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NOTATION

vector of gravitational forces

angle between planes formed by unit vectors from spacecraft to
planet and two stars

bias error

declination of planet

expected value

orbital eccentricity

orbital angular momentum

unit vectors along Cartesian axis

maximum ratio of interpolation error to measurement error

right ascension of planet defined with respect to star-fixed
coordinates

range vector from spacecraft to center of planet
magnitude of T

half the planet subtense angle

time

unit vector along r

Cartesian components of u

velocity vector

magnitude of Vv

unit vectors to star number 1 and star number 2
Cartesian axis

angle between star and limb of planet

half the time interval between measurements

small random increment

product of universal gravitational constant and mass of planet



Vi

standard deviation

angle between stars

irradiance
integer
normal

radial

Subscripts



PRELIMINARY DETERMINATION OF SPACECRAFT TRAJECTORIES
USING ON-BOARD OPTICAL MEASUREMENTS
John D. McLean

Ames Research Center

SUMMARY

This report deals with the problem of determining the trajectory of a
spacecraft from on-board optical measurements without a priori information.
Only sufficient information to determine the trajectory is used, and it is
assumed that this preliminary estimate will be improved later by the use of
differential corrections and redundant data.

Five basic types of measurements, representing instruments considered
feasible or within the state of the art, are considered. The effects of ran-
dom and bias type measurement errors and interpolation errors arising from
nonsimultaneous measurements are analyzed. Only observations of the central
body and two stars are considered.

Within certain limitations all five measurement types will give
satisfactory results. Two important factors are the proper choice of stars
and the calibration for eliminating bias errors. The errors for four types of
measurements are strongly dependent on the relative location of the projection
of the radius vector from the vehicle to the central body onto the plane
formed by the unit vectors directed from the central body toward the two stars.
The choice of stars is greatly enhanced by allowing measured angles as large
as 90°, substantially larger than the present state of the art. Irradiance is
a major source of bias error, and every effort should be made to correct for
it; even a crude correction would be helpful.

The random position error can be approximated by the radial error from a
single subtense angle measurement, and the accuracy of this approximation
increases with range from the central body. This approximation can be used to
show that within the present state of the art, the maximum distance from the
central body at which the measurements considered in the study would be useful
is about 200 times its radius. The usefulness of the methods at ranges of
less than /2 times the radius of the central body, while theoretically
possible, is of questionable practicality.

INTRODUCTION

Many navigation schemes require an initial estimate of the trajectory
and use very sophisticated data processing techniques. Such systems are sub-
ject to partial failures, which, if not discovered immediately, make the
information in the on-board computer useless. It is thus essential to have



available a simple back-up navigation scheme that can determine an orbit to
a reasonable accuracy with no a priori information.

So far, studies of back-up navigation methods have concentrated on the
use of manual computations and on the calculation of perigee altitude (e.g.,
refs. 1 and 2). A more desirable system, however, would consider all elements
of the trajectory. Reference 3 describes such a system, which is designed for
near-earth orbits of very small eccentricity. This approach uses manual cal-
culations and a large amount of precomputed graphical data. For more general
applications, such as lunar and interplanetary trajectories, greater accuracy,
in terms of significant figures, is required, and it appears impractical to
obtain this accuracy without the use of redundant data.

The approach used in this study is the same as that used by astronomers
in determining the orbit of a newly discovered body. That is, a preliminary
estimate of the trajectory is made using only enough data to determine the
position and velocity vectors at a given time. The estimate is then improved
by the use of redundant data from additional observations. This technique
does not require any greater accuracy in measurements but it does require the
use of a small automatic computer.

This report is concerned with the first part of the problem, that is,
with a preliminary determination of the trajectory, or, in other words, the
position and velocity vectors of the spacecraft at some given time. The
determination of velocity consists essentially in making two position fixes
and then interpolating to find position and velocity at some intermediate

time.

Hamer and Mayo (ref. 4) reported on the accuracy of obtaining position
fixes using a number of different combinations of simultaneous on-board mea-
surements including radar ranging. This report presents a more detailed error
analysis of several possible methods that require fewer measurements and
include some practical constraints. This analysis is carried out by the
linear perturbation method, which Hamer and Mayo have shown to be valid for
fairly large errors in the type of measurements considered.

Only optical observations of two stars and the central attracting body
involving measured angles no greater than 90° are considered. Five different
types of measurements are investigated. The instruments used are either
within the present state of the art or are considered to be potentially feasi-
ble. In some cases a complete position fix cannot be made with a single
observation, and it is then necessary to refer the data to a common epoch by
interpolation. The report considers errors due to interpolation as well as to
measurement inaccuracy.

Since the velocity 1s determined directly from position-fix data, most of
the error analysis deals with the accuracy of position fixes, and the errors
in determining the corresponding velocities require only a brief treatment.
The object of the error analysis is to determine whether the preliminary esti-
mate of the trajectory 1s accurate enough to allow the use of linear perturba-
tion theory to process subsequent redundant data for improving the estimate.



It is difficult to assign numbers to such an accuracy criterion since the
errors in the linear perturbation theory depend upon the time before addi-
tional data are acquired and the nature of the trajectory as well as the
errors in the preliminary estimate. In most cases, however, the preliminary
estimate should be accurate enough if the magnitude of the errors in position
and velocity do not exceed 2 or 3 percent of the magnitudes of the total
position and velocity, respectively.

DESCRIPTION OF MEASUREMENTS

The measuring instruments for a back-up navigation system should be
simple and reliable; therefore, only optical instruments have been considered.
In addition, only observations of two stars and the central body were used in
order to simplify the measurements and computations. Triangulation of two
celestial bodies, which usually gives the range more accurately than the cen-
tral body subtense angle (ref. 4), was excluded. This was done because of the
number of measurements required and the difficulty of interpolation if the
necessary angles cannot be measured simultaneously.

The error analysis methods described later in the report are valid for
angles as large as 180° between the two stars and between each star and the
center of the central body. For the computation of data, however, these
angles were restricted to magnitudes of 90° or less, giving 90° total field of
view. This restriction is reasonable since it can be shown that if stars are
available anywhere within this allowable measurement range, then accuracy will
not be improved by increasing this measurement range. Angles up to 90° are
included for completeness, even though this limit is beyond the present state
of the art. For example, the Apollo and Gemini spacecraft windows restrict
the angles measured with the hand-held sextant (ref. 5), to be within a field
of view of about 50°. The Apollo space sextant can measure angles up to 57°
from the principal axis to give a field of measurement of 114°. Even so, the
fact that the measured angles cannot exceed 57° prevents the use of many pairs
of stars within the field of view.

Definition of Variables

We wish to determine the position of the spacecraft in a Cartesian
coordinate system having the origin at the center of the dominant attracting
body. However, for convenience we will translate the origin from the central
body to the spacecraft as shown in figure 1. The vector Tr in the figure is
the position vector of the planet! with respect to the spacecraft and is the
negative of the desired position vector.

11n the remainder of the report the word 'planet" will be used to refer
to the central attracting body even though that body might actually be the
Sun or Moon.



z For convenience the coordinate
system used will be a Cartesian sys-
tem as follows: The positive X
Planet axis lies in the direction of star
number 1, while the Y axis is in
the plane of the two stars, normal
to the X axis and positive when on
the same side of the X axis as
star number 2. The Z axis com-

u

Spacecraft

~p pletes a right-handed orthogonal
4 Star#2 system. This report deals only with
909 = finding T in the coordinate system,

but the coordinates can be trans-
formed readily into any inertial

gmtl——-~“”////// system in which the directions of
= the stars are known.

7/

X/

RA

The angles RA and D in
figure 1 are, respectively, the
right ascension of the planet mea-
sured in the X-Y plane from the
X axis and its declination above (or below) the X-Y plane. It is pointed
out in reference 4 that another star must be observed to avoid ambiguity. The
ambiguity occurs here as an uncertainty in the sign of D, but the observer
can determine the proper sign easily from the relative positions of the planet
and the two stars. (If one draws an arrow from star 1 to star 2, D 1is
positive when the planet is to the left of the arrow.)

Figure 1.- Geometry for position fix.

The "star-center'" angles ¢; and Y, are measured from stars 1 and 2,
respectively, to the center of the planet, while S is defined as half the

planet subtense angle.

We define the corresponding star-limb angles vy; and y,, respectively, so
that

¥i = vi + kiS (1)
where
ki = #1

The positive sign is used for vy; measured to the limb nearest the star and
the negative sign for the far limb. The angle between the planes formed by

T and the lines of sight to the two stars is denoted by B, and ¢ 1is the

angle between the two stars.

If U is a unit vector in the direction of T then

_ - u
r=ru=r <u2> (2)
ug



and

u; = cos RA cos D
up = sin RA cos D (3)
ug = sin D

while
r =R csc S

where R 1is the radius of the central body. If we normalize by using the
planet radius as the unit of length, then R = 1 and

r = csc S 4)

Measuring Instruments

Three general types of measuring instruments were considered. The first
type would measure RA, D, and S or ¢j, ¥, and S simultaneously. The
photographic technique investigated by Walsh (ref. 6) could be used for this
purpose. Walsh's approach uses a sextant-type measuring instrument with the
human eye replaced by photographic film. Sketch (a) illustrates one possible
example of such an instrument for two dimensions. The star and central body
need only be within a relatively large field of view, and the incremental
angle, which must be added to o (the angle between the optical axes), can be
measured from the film. The subtense angle and center of the planet can be
determined from the film and, therefore, the star-center angle can be measured
directly. Walsh's results indicate the photographic method to be potentially
feasible, and although he considered no more than two lines of sight, the
method could be extended to three. The three-line-of-sight method would allow
the simultaneous measurement of S and either ¢; and Y, or RA and D,
depending on the configuration of the instrument. The latter combination,

Sketch (a)



which could also be measured by a theodolite mounted on a stable platform,
will be used as a standard for comparison in this study.

The second type of instrument considered is capable of measuring two or
three angles simultaneously without the use of photography. The trisextant
reported on by Novak (ref. 7) is an example of such an instrument. The tri-
sextant has three lines of sight and the principal line of sight has (or could
have) a field of view large enough to observe a substantial portion of the
planet, while the two secondary lines of sight observe stars. The operator
sets the images of the stars tangent to the disk of the planet simultaneously

as shown in sketch (b). The readout
scales on the instrument provide the
angles 7Y;, Yy, and B. The portion
of the planet between the two stars
Freld of vew of prncpar MUST be within the field of view of
ine of sight the principal line of sight, and this
requirement restricts the possible
location of stars when the spacecraft
is near the planet. This restriction
may be dealt with in a number of
different ways, such as using a
larger field of view and less magni-
fication at shorter ranges, and has
not been considered in this study.
An experimental model of the Martin
trisextant has been tested at Ames
Research Center and found to be fea-
sible from the operational standpoint. However, this model was not suffici-
ently accurate for space navigation, and the ultimate accuracy obtainable with
such an instrument is unknown.

Q_Star No |

Sketch (b)

The third instrument considered, which measures only a single angle at a
time, is typified by the hand-held sextant described in reference 5. Data
obtained from the instrument in ground tests and space flight (refs. 5 and 8)
were found to have random errors of less than 10 arc seconds standard devia-
tion. Bias errors ranged in magnitude from 0 to 28.7 arc seconds, depending
on the measurement conditions. Further studies may lead to the reduction or
calibration of part of the bias errors.

In tests of instruments such as the hand-held sextant it has been found
difficult to estimate the planet center accurately, especially when the full
disk is not visible. Therefore star-center measurements are considered only
when photography is used.

Types of Measurements
In order to determine the position vector, at least three of the angles

defined must be known at a given time. The consideration of different practi-
cal combinations led to the following five types of measurements.



Type 1- Simultaneous measurement of the right ascension, RA,
declination, D, and subtense angle, 2S, by means of photography (or an
inertially stabilized theodolite). As will be seen in the section on Error
Analysis Methods, this is the only one of the five types of measurements for
which the error equations do not contain singularities. Therefore type 1
measurements have been used as a standard of comparison for the other types.

Type 2- Simultaneous measurement of vyj;, Yp, and 2s. This measurement
would require photography, but it could be approximated by using the trisex-
tant to measure 2S, then vy; and y, simultaneously, followed by another mea-
surement of 2S. Linear interpolation, discussed later in the report, would
be used to refer S to the same epoch as vy; and yp. This approximation is
not analyzed.

Type 3- Simultaneous measurements of vy;, vz, and angle B, between the
planes of the two star-1limb angles. This single measurement with the
trisextant would allow a complete position fix.

Type 4- Simultaneous measurement of one star-1limb angle and the subtense
angle followed by simultaneous measurement of the other star-limb angle and
the subtense angle at a later time. Interpolation is used to refer these two
sets of measurements to a common epoch. This is another possible application
of the trisextant, or it could be done with the two-lines-of-sight
photographic sextant described by Walsh.

Type 5- Measurements of the two star-1imb angles and the subtense angle,
one at a time in a suitable sequence, followed by interpolation to refer the
measurements to a common epoch. These measurements, which could be performed
with the hand-held space sextant described in reference 5, constitute the only
one of the five types that is truly within the present state of the art.

DETERMINATION OF POSITION AND VELOCITY

This section of the report presents the equations used for determining
position and velocity from the measured angles. The angles RA and D are
measured directly only in type 1 measurements, and for the other types the
uj 1in equation (3) must be expressed in terms of the angles (y;, Y2, S or B)
actually measured. However, it is more convenient to combine the vy; with S
using equation (1) in order to get the star-center angles ;. The resulting
equations for the uj and the equations for determining S from type 3 mea-
surements are derived in appendix A. Types 4 and 5 also require interpolation
formulas for determining position and these are derived in appendix B along
with those used for determining velocity.

The position-fix equations for all types of measurements are summarized
in the following paragraphs after which the computation of velocity is
discussed.



Position Fix Equations

Type 1 measurements- In this case equation (3) can be used for u while
r 1is given by equation (4).

Type 2 measurements- Again, r 1is given by equation (4), but u is given
by equation (A8) as

[cos ¥,

- CoS Yo - COS Y1 cOS ¢
u = : sin ¢ : )

+ /1 - u? - u22

e i

The third component is equal to sin D and the sign is chosen by the method
described earlier.

Type 3 measurements- For these observations S is computed in terms of
Y1, Y2, and B using the following equation from appendix A:

2 cos ¢ - cos(kyyy - koys)(1 + kijks, cos B) 6
1 - kiky cos B (6)

cos (25 + kyyg + szz) =

where kj and k, are defined by equation (1). Once S is known, Y; and ¥o
can be found using equation (1), and U 1is determined by equation (5). Equa-
tion (Al15) is an alternate equation for u

[;OS wl

cos ¢, - cos Y; cos ¢
sin ¢

[ol]
i

*sin ¢; sin Y, sin B
sin ¢

e —

Type 4 measurements— This is the first case in which it is necessary to
use interpolation. Measurements of one star-limb angle and the subtense angle
at each of the times are indicated in table 1.

TABLE 1.- REGULAR SCHEDULE FOR TYPE 4 MEASUREMENTS

Time ty | to l t3 l

and S I Yy and S|

Angles measuxed Y, and S I Y

2




Equation (4) can be used to compute
Y, at t;

equation (1) gives

r at each time in the table while
and tj3 and Y, at t,.

Next Gibb's method (ref. 9) is used for interpolation to find ¥, (t,).
The interpolation formula, derived in appendix B, is equivalent to third order

in time. For convenience

- - - A(t
r(tz) ='{;7%_EI [%3r(t1) - tir(ts) - (61)

i A(ta)

where

At times

g tits(2ty - t3i]

t; and t3, r and y;

t, 1is assumed to be zero, in which case

tita(ty - 2t3)

(7

A(t) is the gravitational force acting on the spacecraft at time t.

have been determined so that if w; is

the unit vector in the direction of star number 1 it is possible to compute

i‘(ti)

Thus equation (7) can be used to find

both sides with w;

and, using equation (7),

A(t)

This approximation is necessary since all three components of

if a conic trajectory is assumed.

© Wy = r(tj)cos ¥y (ti)

cos Y (ty) by taking the dot product of
In this case

iy = -

rzit) cos P (t)

r(t) would be

needed to compute A(t) - w; for the n-body case. The resulting expression
for cos Y;(ty) is
cos ty) = ty - cos t
v1(t2) t; - t1 |r(t2) |3 6r3(t1) b1 (t)
I’(ts) ut1t3(t3 - 2t1)
- t, - cos t 8
r(tz) i 1 61‘3 (t3) ‘Pl( 3) ( )
Since cos ¥y(ts) and r(ty) can be computed directly from measurements at tj,

enough information is available to compute

and (5).

r(ty) using equations (2),

4,



Type 5 measurements- In this case it is possible to measure only one
angle at a time, and it is necessary to depend partly on linear interpolation.
Either the range, r, or one or both of the star-limb angles may be interpo-
lated, but it will be shown later that linear interpolation is somewhat more
accurate for r than for vy. Therefore, from the standpoint of interpolation
accuracy, the schedule in table 2 was considered best.

TABLE 2.- REGULAR SCHEDULE FOR TYPE 5 MEASUREMENTS

Time t1 ts t3 ty ts tg ty

Angle measured S Yq S Y, S Yy S

Linear interpolation gives the range at t,, ty, and tg as

(tivp - ti)r(ti-1) + (i - ti-1)r(ti+1)

r(ti) = (ti¥i) - (ti-1) ®)

Once 1r(ty), r(ty), and r(tg) are known, equation (8), with the proper sub-
stitutions for the tj, can be used to compute cos 1 (ty). Then cos P, (ty)
is determined from a direct measurement, and equations (2), (4), and (5) give

T(ty).

The procedure just outlined uses linear interpolation to determine r at
times t,, ty, and tg, after which Gibb's method is used for interpolation to
determine cos Y (ty). Two alternate schedules which use only linear inter-
polation are shown in table 3. The same time indices are used for comparison
with table 2. For case 1 equation (9) is used to compute 7T (ty); y(t) is
substituted for r(t) in equation (9) to obtain vy, (t,) which can be used with
r(ty) and vy, (ty) in equation (1) to give ¢;(ty) and Yy (ty). For case 2 equa-
tion (9) is used to compute vy;(ty) and yp(ty), and S(ty) is known from
direct measurement. FEach of these alternate schedules uses equation (9) twice,
whereas the regular type 5 schedule uses equation (9) three times and equa-
tion (8) (from Gibb's method) once. Therefore, the alternate schedules
require less computation but have larger interpolation errors; this is because
(tg - to) is larger than the time intervals used for linear interpolation in
the regular schedule, and Gibb's method is more accurate than linear
interpolation.

TABLE 3.- ALTERNATE SCHEDULES FOR TYPE 5 USING ONLY

LINEAR INTERPOLATION

Time I ty l t2 l t3 I ty l tsg l tG J ty l
Angle measured, case 1 - S Yy Y, Yy S -
Angle measured, case 2 - Y1 Y, Y, | v, -

10



Computation of Velocity

It is a well-known principle of celestial mechanics that if the position
vector on an orbit is known at two different times, the velocities can be cal-
culated. In the two-body case this determination of velocity is known as
Lambert's problem, and a number of methods of solution are in the literature.
However, these computational procedures are valid for large time intervals and
are fairly complex. For shorter time intervals Gibb's method (appendix B)
will provide a reasonably accurate solution with much less computation and
allow the inclusion of perturbing gravitational forces.

Two separate sets of measurements of any of the five types already
discussed will provide two independent position fixes. With types 4 and 5 it
is also possible to obtain two position fixes by extending a single measure-
ment schedule to include one additional measurement each of a star-limb angle
and the subtense angle. The use of the two independent position fixes and the
extended schedules is discussed in the following paragraphs.

Two independent position fimes- If r(ty) and T(t3) have been determined
by two sets of any of the five measurement types, then the velocity v(ty) at
some intermediate time t, can be computed by Gibb's method. It is shown in
appendix B that if it is assumed that t, = 0, then

- - - At
v(ty) = ﬁ [r(ta) - r(ty) - (61) (2t3? + 2tyt3 - t;12)
At
B (63) (t3? - 2tytg - 21112)} (10)

while 7r(ty) is given by equation (7). These formulas can also be used if the
epoch t, 1is chosen to coincide with the beginning or end of the interpola-
tion interval by letting t, = t; = 0 or ty, = tg = 0. If, for example, the
second choice is used equation (7) reduces to

r(ty) = r(t3)

and equation (10) becomes

V(e = TEU ) L T Rey) 2R (ea)) (11)

The choice of epoch requires less computation but is less accurate, as will
be shown in the section on Error Analysis Methods.

11




Extended schedules- The schedules of types 4 and 5 can be extended to
provide enough information for computing both r and v from a single set of
measurements. The measurement schedules and the necessary computations for
type 4 are shown in table 4.

TABLE 4.- EXTENDED SCHEDULE FOR TYPE 4 MEASUREMENTS

Time t to ts ty ts
Angles measured vy, and S| vz and § vy and S [y, and S
Computed from r(ty), r(ts), r(ty), r{ts),
measurements v1(t) ) va(t2) ¥y (ty) V2 (ts)
From interpolation
cos t cos t
(eq. (8)) ¥y (t2) ¥ ( 4)
Computed from measured _ _
and interpolated r(tso) T(ty)
quantities
From interpolation = -
,V(t
(eqs. (7) and (10)) r(t3),v(ts)
, C S E - _

Note that this is essentially the same procedure as is used for two
separate position fixes, the difference being that the extended schedule uses
some of the measured angles twice. Reusing the data makes no difference in
the position fix computations, but, as will be seen in the next section of the
report, it does affect the error analysis.

The extended schedule and associated computations for type 5 measurements
are shown in table 5. In this case only 9 measurements are required compared

TABLE 5.- EXTENDED SCHEDULES FOR TYPE 5 MEASUREMENTS

Time t, to ts ty ts tg ty tg tg

Angle measured S(ty)|v1(t2)[S(t3)|va(ty)|[S(ts){y1(te)|[S(t7)|v2(tg)|[S(tg)
Computed from
measured angle |r(t;) r(ts) r(ts) r(ty) r(tg)
From linear
interpolation
(eq. (9)) r(ty) r(ty) r(tg) r(tg)
From measured and
interpolated
quantities ¥1(t2) Yo (ty) ¥1(tg) Yo (tg)
From interpolation
(eq. (8)) Y1 (ty) Y2 (te)
From measured and
interpolated _ _
quantities r(ty) r(tg)
From interpolation _
(eqs. (7) and r(ts)
(10}) v(ts)

12



to the 14 needed for two independent position fixes, but the amount of
computation is the same. As in the type 4 measurements the error analysis is
substantially different from that for the regular schedule.

This approach of making only one set of observations to determine both
position and velocity is discussed further in the section on error analysis
and in appendix C. However, as will be shown later, the procedure appears to
have limited practical value because of accuracy limitations.

ERROR ANALYSIS METHODS

The previous section presented equations for finding the position and
velocity vectors from appropriate sets of measured angles. This section deals
with the equations used to evaluate the errors produced in the computed posi-
tion and velocity by measurement errors and by the use of linear interpolation.
The errors in position due to measurement errors are discussed first and then
those in velocity. These errors are evaluated to a first-order approximation
by differentiating the position fix equations from the previous section with
respect to the measured angles. The errors due to the use of linear interpo-
lation are then dealt with briefly. The equations used for evaluating the
measurement errors are derived in appendix C and those for the interpolation
errors in appendix D.

The measurement error in each angle is assumed to consist of a bias and
a random component. It is assumed that the random component is gaussian with
zero mean and independent of the random components of errors in the other
measured angles, but errors in vy; and vy, have the same standard deviations.
The resulting errors in position and velocity are evaluated on the basis of
the standard deviations of their components. The bias errors are discussed in
detail in the following paragraphs.

Data presented in reference 5 indicate that even after careful calibra-
tion there may be fairly large mean errors in a series of measurements taken
over a short period of time. It is customary to treat such unknown biases as
random variables in order to determine the rms error for the ensemble of mea-
surements using different instruments and operators at different times. In
this study, however, it was desired to assess the relative importance of the
bias errors in a given practical case where one instrument is used by the same
operator over a short period of time. Therefore the bias in each measured
angle is assumed to be a constant, and the resulting errors in position are
determined directly.

The biases are separated into two parts, one part due to irradiance or
other uncertainty in planet diameter and the other part due to instrument
inaccuracy, including operator error. This separation is made because it is
pointed out in reference 5 that irradiance is a major source of bias error
which can be corrected for only approximately at the present time.2 It can be
. 2Another important source of bias error is the window-induced error men-
tioned in reference 5. This error can be corrected for by the method
described in reference 10 and will not be considered here.
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seen from sketch (c¢) (taken from ref. 5) that when <y 1is measured to the near
limb, it is reduced by the irradiance bias bj. On the other hand, if y is
measured to the far limb, it is increased by by.

Star

Measured ¥y - b
5

Measured
u Y = b

Sketch (c)

Data presented in references 5 and 7 indicate that a zero calibration
error may account for a fairly large part of the instrument bias. This cali-
bration error, which would be a constant for a given instrument line of sight,
will be discussed with the error equations. For numerical evaluation of the
effects of the bias errors, to be discussed in the section on results, the
signs of the individual instrument biases were chosen to give the largest

possible error.

The treatment of these bias errors is pessimistic, and quite simplified,
but it does show how such biases affect the accuracy of the trajectory
determination and indicate the need for better calibration.

The equations used for evaluating the position errors produced by
measurement errors are presented next.
Measurement Errors in Position
The measurement errors are evaulated to a first-order approximation by

differentiating the position fix equations with respect to the measured angles.
The differentials of the angles are replaced with the various error components

described earlier as follows:

dRA = Spp + bpa

dB

6B + bB

-

dS = 58 + bs + bI (12)
le = 51 + bl - klbI

dY 62 + bz - ksz

i

2
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The kj are defined by equation (1) while ¢ and b subscripted by the
measured angle are the random errors and instrument bias in that angle. The
irradiance bias is denoted by bj.

If the spacecraft-planet vector r given by equation (2) is

differentiated, then
_ uj du;
dr = dr{uy |+ r |dup
uj duj

Since u and du _are orthogonal dr can be separated into two components, dr
along T and r du normal to it. The magnitude of 1 du can be written

rlda] = rvdu;? + duy? + dus? (13)

The position errors due to measurement biases are found by setting the
random errors in equations (12) equal to zero. The radial bias error b, is
obtained by substituting the resulting differentials into the appropriate
expression for dr while the normal bias error bp 1s obtained from
equation (13).

The random errors are evaluated on the basis of the standard deviations
of the components of dr. These standard deviations, denoted o, for the
radial component and oy for the normal component, are given by

VE(dr?) - br?

Q
I

(14)

Q
n

0 = Vr2E(du? + dup? + dug?) - by?

Equations (13) and (14) show that

E|ldr] = /(0,2 + 052) + (bp2 + by?)

and the magnitude of dr, which is the vector error in _r, is the same as that
of a variable having a constant bias of magnitude /brz + bn2 and a random
component with standard deviation +vo,.2 + o,2. The following paragraphs give
the equations, derived in appendix C, for by, by, oy, and o for the differ-
ent types of measurements. The standard deviation of each of the random
errors &, y in equations (12) is denoted by 0(.) where the subscripts are
the same exCept that it is assumed that o3 = 05 = Oy.
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Type 1 measurements- The biases are

by = -(by + bg)rvrz - 1
(15)
by = tvbp2 + b2, cos2 D
and
or = Ogrvr2 - 1
(16)
Op = T /BDZ + UéA cos? D
Type 2 measurements- The bias errors are
by = -(bp + bg)rvr2 - 1
(17)
- _r 2 2 _ 1/2
bn [(by + kibg)® + (by + kpbg)® - 2(b; +k;bg) (by +kybg)cos B]

sin B
It was stated earlier that the signs of the biases were chosen to give the

largest possible error; therefore if it is also assumed that
[b1] = [ba] = [bg| = b, then

[be] < (b7 + b)rvr2 - 1

(18)
rb
|bn| <525 Y81 + |cos B|)
The standard deviations of the random errors are given by
Oy = ogrvr2 - 1
(19)
r _
on = Sin B V@ch + 2052(1 + kik, cos B)

For this type of measurement there are singularities in both bp and op when
B = 0 or 180°. Thus, poor accuracy would be expected near these values of B.

Type 3 measurements~ In this case the errors are the result of errors in
Yl: Yz: and B: and

16
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ZIC‘VI‘2 -

1
bI‘ = —2——'—' [klbl(l + pl) + kzbz(l - pl) + 2bB92 - ZbI]
(kb; - k,b,)2
bn = 5B { L1 22° [(1+p,2) + kika(1 - p;2)cos B]
2 172
+2bp(k1by - kgbp)pp, (1 - kiky cos B) + 2bg%p,2(1 - kikp cos B)
If |by| = |by] = b and the signs of the biases are chosen to give the largest

possible error, then

lbrl <r/r2 -1 [by + b(1 + lpll) + lepzl]

T
sin B

by | < fb2[ (1 + 0,2) + kika(1 - p;2)cos B] L (20)

2, 2 1/2
+4b|bg| [o1p, (1 - kiky cos B)| + 2bp%p,%(1 - kikp cos B)}

The standard deviations of the random errors are

2
o
rv/r2 - 1 J/;%— (1 + p,2) + ap2p,2

Q
=
]

o T
n sin B

{GYZ[(I + plz) + kiko (1 - plz)cos B] + 20B2p22(1 - k1k, cos B)}!/2

(21)
In equations (20) and (21) ¢, and p, are defined by
_ sin(kllpl - kzll)z) 1+ k1k2 cos B)
1 % sin(kyvy * Kp¥p) @ - Kikp cos B)
and
_ sin ¥, sin Y, sin B
P2 = sin(kj¥1 + ka¥2) (1 - K1kp cos B)
If k; = ky, it can be shown that
2 - 2 inl -
1+ 932+ kky(1 p1%)cos B - 1 , sin (¥ Vy) . 1
sin? B 1 -cos B sin2(y; + ¢,) (1 - cos B)?
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and
p52 (1 - kyk, cos B) sin? y; sin? y,
sin? B sin?(¢; + ¥y) (1 - cos B)

In that case o for type 3 has singularities for B = 0 and y; + ¥, = 180°,
but none for B = 180°. Similarly, if k; = -k, there are singularities for

B = 180° and y; = Yo but none for B = 0.

Type 4 measurements- The equations for by and b, for type 4 are
identical with those for type 2 and are given by equations (18). Also, since
r is determined from a single measurement, o, is the same as for type 2, and

op = oerrZ -1

2 172
_ 3 2.0s 2 2 /r2
op = g{ﬁ“ﬁ"E'UY *= [3(r¢-1)ctn® P; +2V/r% -1 ctn ¢; (2ky cos By +kp)]

(22)

The equation for o was derived under the assumption that y; 1is the angle
interpolated. If ¢, 1is interpolated instead, it replaces ¢; in the
equation and k; and k, are interchanged.

In addition to the singularities for B = 0 or 180° noted for type 2,
Gibb's method produces a singularity when the interpolated angle y; or ¥y, 1is
zero. This singularity is in the measurement error and should not be confused
with the interpolation errors discussed later in the report.

Type 5 measurements- The bias errors for this type of measurement are also
given by equations (17), but is was pointed out earlier that a large part of
the bias errors appear to be due to zero calibration errors. If the biases in
vy and S are attributed entirely to this source, then equations (17) for
type 2 biases remain the same. However, since all angles for type 5 are
measured with the same instrument bj; = by = bg = b and

[br| < (b + b)T/T2 - 1

(23)
b 172

EIH—E [4 + 2k1 + 2ko - 2(1 + kl + kz + klkz)COS B]

[bn| <

These equations were used for type 5 in order to assess the effects of the
zero calibration errors. Note that if k; = kp = 1, there is no singularity
for B =0, and if k; = kp = -1, then b, = 0.

The standard deviations of the random errors are
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r?2 - 1 )
Oy = Csr 3
T o2, 9s* o 2 L (24)
°n = 3In B 3 2t 2 [(x - 1)ctn® ¢,
172
+2ko (VY12 - 1 ctn ¢; + kj)cos B + 3]} J

Type 5 has singularities at the same points as type 4, that is, at B = 0,
B = 180°% and ¢; = 0. Since types 4 and 5 both have terms containing ctn pj
where ¢; is the anglé interpolated, it will be assumed that interpolation
will always be carried out with the larger of the two angles.

Note, also, that o, for type 5 is reduced by /5'compared to that for
types 2 and 4 because two measurements of S are used in determining the
range.

The two alternate schedules for type 5 (discussed in the section on
position fix equations) which use only linear interpolation have nearly the
same position errors due to measurement inaccuracies as type 2. These
schedules can be evaluated on the basis of data from type 2.

Extended schedules- It was pointed out in the section on the computation
of velocity that the velocity could be determined by adding one measurement
time to the type 4 schedule or two to the type 5 schedule. The resulting bias
errors are unchanged, but the standard deviations of the position errors
become, for type 4,

W

Opr = 0T

og2

2

[(r2 - 13 ctn? Y1 + 3 ctn? Yo

= __r 2
%n 2 sin B lSGY *
L (25)

+4 ctn Y; ctn P, cos B) + vr2 - 1 (4k; + 6k, cos B)ctn Y

172
+ !/1‘2 -1 (41(2 + 61(1 CcOs B)Ctn wz + 10]

and for type 5
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2 _
o-r = O'Sr é(r_sa._l)_

T

2
o
=T 2 4 S5 2 _ 2 2
n = 2 5in B {SGY * 3 [(r 1)(2 ctn® ¥; + 2 ctn® Yo

(26)
+ cos P ctn P, cos B] + 5/r2 - 1 (k; ctn Py + ky ctn P;)cos B

1/2
- 15k3k, cos B + 20

Note that for both measurement types, o, 1s reduced because more measurements
of S are used in determining r. On the other hand, singularities are
present for both ¥; = 0 and y» = 0.

Velocity Errors

It is shown in appendix C that, for most conditions, the third-order
terms in equation (10) may be neglected in computing the measurement errors in
v(ty). That is, we can assume

df (tg) - dF (t;)

o (27)

dv(ty) =

Since the biases are considered to be constant over the observation period,
the portions of dr(ty) and dr(t3) due to bias errors are equal. Therefore,
to a first approximation dv(t;) is due only to random errors, and the
standard deviation, o, of |dv(t,)]| is

/E(Urz + op?) Jop? + an

oy = . - Lr T (28)
t3 - 4 V2 At

Thus, to a first approximation the standard deviation of random error in the
velocity is inversely proportional to the time between the two position fixes.
The standard deviation of error in 1r(t,) (see appendix C) is

_
Jor? + 0,2) (2,2 + t,2)
ty3 -t

cp (t2) = (29)

This error is minimized if -tj; = t3 = At, in which case

2 2
on(tp) = u
ptr2/ = 2
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and

op (t,)
oy (tz) = 22~ (30)

If Gibb's method is used to obtain v(t3) instead of Q(tz), then f(tg) is
assumed to be the correct position, and 9p increases to vo.2 + 0,2 since
the information obtained at t; is not used. However, oy is the same as
when Vv is computed at to. Equation (30) is roughly the same (usually
within a factor of two) for the extended schedule versions of types 4 and 5.

Linear Interpolation Errors

It was pointed out in the description of type 4 and type 5 measurements
that it is necessary to use some linear interpolation with type 5. If one
component of position (in other words r and either ¢; or y,) is known at
two times a more accurate interpolation, such as Gibb's method, may be used.
Since linear interpolation is simpler than Gibb's method, and in some cases is
necessary, we would like to know when the resulting errors are small enough
compared to the measurement errors to be acceptable.3

The bias and random errors are a function only of the geometry, but
errors due to linear interpolation of r or y depend on the orbit as well.
For this reason only upper bounds of these errors were considered. The inter-
polation error for r was evaluated by taking the maximum magnitude of the
second-order term in a Taylor series expansion of r. This error increases as
r decreases, and the minimum value rpip of r was found for which the
interpolation error is less than some fraction, M, of osr/rZ -1 (.e., of
or for type 4). In order to ensure that the second-order term is a valid
measure of the interpolation error, an expression was also found for the mini-
mum value of r such that the third-order term is negligible compared to the
second-order term.

A conceptually similar, but less direct, approach was used for the errors
due to linear interpolation of y. The minimum value of r was found for
which the interpolation error is less than M times Vo2 + o2 for type 5.
The error due to interpolation of vy 1is in the normal direction, but the
radial component is often the dominant part of the measurement error and
therefore should be included in determining the relative importance of the
interpolation error. The value of rpip in this case is a function of B as
well as r.

The values of rpin for which the interpolation error is less than M
times the appropriate standard deviation are presented in the section on
results. Appendix D contains the derivations of the equations used and the

3There is also an interpolation error due to the use of Gibb's method
which is much smaller than that due to linear interpolation. This error,
which cannot be analyzed by linear perturbation methods is discussed briefly
in the section on results.
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values of 1rpip for neglecting the various higher order terms. The latter
results indicate that in most practical cases the second-order terms are a
valid measure of the interpolation error.

RESULTS AND DISCUSSION

The standard deviation of position error, voy2 + 0,2, and the total bias

error, Vgrz + bp? were computed for all five types of measurements with
various values of RA, D, and ¢ at several different ranges from the planet.
At each value of r sufficient cases were computed to cover the range of
angles considered (-90° SRAS90°, 0 <D <90° and 0 < ¢ < 90°).

It was found that, except for type 1, the errors depend strongly on the
location of the projection of T onto the X-Y plane relative to the unit
vectors to the two stars. Three different star-planet configurations, two of
them extreme possibilities for location of the projection and the third an
intermediate value, are illustrated in figure 2. In the first configuration

(a) First configuration, A = ¢/2. (b) Second configuration, A = 0. (¢) Third configuration, A > ¢.

Figure 2.- Star-planet configurations.

(fig. 2(a)) the projection of r on the X-Y plane lies midway between the
two stars. In figure 2(b) the projection of T 1is in the direction of one of
the stars. In this case, star number 1 and RA = 0, but it could be in the
direction star number 2 instead. In figure 2(c) the projection of T lies
well outside the smaller angle between the two stars.

The values of Vo2 + on2 and Vgrz + bp2 obtained for these three

geometric configurations are discussed separately in the next two sections
after which the errors caused by linear interpolation are compared with those

due to measurement errors.

Random Errors

The standard deviations for the random position errors were computed
assuming the same standard deviations of error in each angle measured, that is,
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ORA = Op = 0, = 0g = 0B = 0, except for a special set of data for type 3
measurements. Tests made on the trisextant at Ames Research Center indicated
that it may not be possible to measure B as accurately as the other angles.
Therefore, an additional set of data was obtained for type 3 measurements with
og = 10o.

The value of vYoy2 + on2 for type 1 measurements is presented in
figure 3. The standard deviation in units of (planet radii)/(arc sec) is
plotted as a function of the declination D for four ranges. The correspond-
ing values of oy (dashed lines) are also presented. Note that as T
increases the importance of oy in the total standard deviation becomes
greater, and for = /10 it accounts for nearly all of vop2 + op2. Since
oy 1is independent of D, there is negligible variation of the total standard
deviation with D at the larger ranges. It can be seen from equations (16)
that these results are to be expected and that for large values of r the
type 1 error may be regarded as consisting only of the radial component.
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Figure 3.- Standard deviations of random error for type 1
measurements.

The errors from measurements of type 2, 3, 4, or 5 are functions not only
of the range but also of the relative location of the stars and planet and
whether the star-1imb angles are measured to the limb near the star or the far
limb. The ratios of the standard deviations for these types of measurements
to those for type 1 were computed in order to facilitate comparison between
the various methods. The effects of the relative locations of stars and
planet were evaluated by using the three different configurations (fig. 2) dis-
cussed earlier. Two different values of T, /Ta, and 10, were found to be
sufficient to show the effect of changing range. The results of measuring v
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and y, to the near and far limbs were accounted for by computing the
22 cases described in table 6.

TABLE 6.- CASES FOR WHICH ERROR RATIOS WERE COMPUTED

Case | Measurement type Description

2a 2 vy and y, to same limb

2b y1 and y, to opposite limbs

3a 3 vy and vy, to same limb, o = 0

3b Y1 and Yy, to same limb, o, = 10 ¢

3c vy and Yo to opposite limEs, Og = ©

3d v1 and vy, to opposite limbs, op = 10 o
4a 4 ¥y and Yy, to near limb

4b vy and v, to far 1imb

4c Y] to near limb, y, to far limb

4d y; to far limb, y, to near limb
4e-4h 4 Same as 4a-4d with extended schedule
5a-5h 5 Same as 4a-4h

- ———— - —

The resulting ratios of Vorz + an for types 2, 3, 4, and 5 to those for
type 1 were computed for each of the geometric configurations and each of the
two values of r. These results are presented graphically in figures 4
through 12. The curves for type 2 are presented with each of the other types
separately for ease of comparison. Only the maximum and minimum values from
cases 4(a) through (d) are shown and are labeled as type 4, while the maximum
and minimum values for the extended schedule are labeled 4X. An equivalent
set of data is presented for type 5 measurements, and the curves are labeled

5 and 5X.

The data for the configuration with RA = ¢/2 (fig. 2(a)) are presented
in figures 4, 5, and 6. Three values of ¢ are used with r = ¥10, and one
is also used with r = 10 (figs. 4(c), 5(¢), and 6(c)) in order to show the

effects of range.

Figure 4 shows the ratio for types 2 and 3. For this configuration
B = 180° when D = 0 and decreases as D increases so that vo,.2 + o2 for
type 2 is infinite when D = 0, reaches a minimum at the value of D for
which B = 90° and then increases again. This effect is most noticeable for
the smallest value of ¢ since the minimum value of B increases with ¢.
On the other hand, the curves for types 3a and 3b are at a minimum for D = 0
and increase rapidly for larger values of D. When RA = ¢/2, we can see that
Yy = Y, causing (as was pointed out in the section on Error Analysis Methods)
the errors for types 3c and 3d to be infinite, and those curves have been
omitted. For ¢ = 30° and D = 5°, type 2 errors are less than twice those
for type 1, and the ratio is smaller for larger values of ¢. Also, compari-
son of figures 4(b) and 4(c) shows that as r increases, the ratios for both
types decrease and the spread between the curves of the same type becomes
smaller. From the equations for the standard deviations we would expect the
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Figure 4.- Ratio of \/ar2 + on2 for types 2 and 3 with RA=¢/2 to \/or2 + on2 for type 1.

sensitivity to changes in r to be greater for small values of r.
for ¢ = 30°, r 2 Y10 and any given value of D.

Therefore,
One or both of these

measurement types (type 2 and type 3) will provide a standard deviation less

than twice that for type 1.
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The ratio for type 4 (fig. 5) follows the same trends for changes in

r or ¢ as the corresponding data for type 2.
poorer than type 2, particularly for small values of D.

However, type 4 is generally
The use of the

extended schedule improves the results somewhat and produces lower ratios (to

type 1 values) than type 2 for the larger values of D.

This improvement is

due mainly to the increase in the number of measurements used.
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Figure 5.- Ratio of v/o;?>+ o for type 2 and type 4 with RA =¢/2 to /oy* + op? for type 1.
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The results for type 5 are given in figure 6, and the trends with changes

in r and ¢

are the same as those for types 2 and 4.

Type 5 has substan-

tially smaller errors than type 4 and less spread between maximum and minimum.
The singularities at D = 0 have a greater effect on type 5 than on type 2,

but for D > 25° the type 5 errors are smaller than those for type 2.

This

improvement in performance is probably due to the increased number of obser-
vations for type 5, and for the same reason the use of the extended schedule
provides a small improvement over the regular schedule for type 5. .
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Figure 6.- Ratio of v/o;? + op® for type 2 and type 5 with RA =¢/2 to /0,2 + 052 for type 1.
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The corresponding data for the configuration (fig. 2(b)) where the
projection of T on the X-Y plane is alined with one of the stars are
presented in figures 7, 8, and 9. The errors for this configuration show the
same trends with 1 and ¢ as shown in figures 4, 5, and 6; namely as T or ¢
increases, the ratios of the standard deviations to those for type 1 become
smaller, and the spread between the maximum and minimum curves is reduced.
The effect on types 2 and 3 of changing the geometric configuration can be
seen’ by comparing figure 4(a) with figure 7(b) and figure 4(b) with fig-
ure 7(d). These pairs of figures have the same values of ¢ and r and the
curves for type 2 are nearly same except for small values of D. The type 2
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Figure 7.- Ratio of /0,2 + op? for type 2 and type 3 with RA=0 to \/o;? + op® for type 1.
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errors for

RA = ¢/2
little noticeable increase for RA = 0.

increase quite rapidly for

0 than for RA

D < 20° while there is

On the other hand, the errors for

= ¢/2, but the combination®

type 3 are much larger for RA =

of types 2 and 3 will still provide a standard deviation less than twice that

if ¢ = 30° and r = v/10.

of type 1 for all values of D

When the regular schedule is used, the errors for type 4, shown in
figure 8, are not affected as strongly by the singularities near D = 0

5w

1 1 | | 1
20 30 40 50 60 TO

0] 10 80 90 Q
Declination, deg
(@) ¢=15°,RA=0,r=+/10
o B
Y
5 Y -
W
4t W =
A\
\\
\
3 N —
\\\\
2 EQ\\\
2, 4N NS N
2 \\\\
N ~ ~
\\\\\
~
~
N \\ ~
N ~
2b N ——
| |
‘9L 20 \\ \4: B
~ ~
8 S~ - —
4x
T
8 i i i i \ | I S S |
0] I0 20 30 40 50 60 70 80 90 o]

Declination. deg

(c)9¢=30°,RA=0,1=10

Figure 8.- Ratio of /oy + 02 for type 2 and type 4 with RA=0 to v/o;? + on? for type 1.

YNote that if RA

is exactly zero then

as
)
\
1 | | 1 | L1+ )
0 20 30 40 50 60 70 80 90
Declination, deg
(b)¢ =30°, RA=0,r=+/10
A
\
\
\
\
\
\
\
\
\}
\\\
\
AN
\ N
\
4 _\ \\ _ 2b
;%;20
~_ 4 S — 4
S~ >
= T4
[ (d)
l 1 L L 1 ! ! S
I0 20 30 40 50 60 70 80 90
Declination, deg
(d) ¢ =60°,RA=0,r=+/10
lim B = 90°, and o, for type 2

D~+0
(eq. (19)) is bounded. However, for RA slightly different from zero, oy
will approach infinity and it would be necessary to use type 3 for very small

values of D.

29



with the configuration where RA = ¢/2. On the other hand, the singularities
have greater effect on the results for the extended schedule when RA = 0.
This result is to be expected since y;, which goes to zero with D is not
interpolated with the regular schedule, but it must be used with the extended
schedule thereby introducing ctn ¥;, into the equation for op.

Figure 9 shows the same data for type 5 measurements, and the same
changes with r and ¢ are noted as when RA = ¢/2. The change in geometric
configuration from RA = ¢/2 to RA =0 has the same general effect on the
type 5 results as on those for type 4, and for both configurations the ratios
for type 5 are considerably lower than those for type 4.
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The data for the configuration (fig. 2(c)) where the projection of T
onto the X-Y plane lies well outside the smaller angle between the two stars
are presented in figures 10, 11, and 12. The ratios for types 2 and 3, which
are shown in figure 10, are much larger than those for the other two configu-
rations. Comparison of figures 10(a), 10(b), and 10(d) with figure 7(a),
which has the same values of ¢ and r, shows that the ratios for type 2 are
the same at large values of D, but the ratios in figure 7(a) are becoming
relatively much smaller as D decreases. The ratios for type 3 start at
larger values for D = 0 but do not increase as rapidly as those for the
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Figure 10.- Ratio of /o2 + op? for type 2 and type 3 with RA>¢ to v/o,® + o for type 1.
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other two configurations. Note that the ratios for types 3a and 3b are off
the scale of the graphs in all cases, and in figure 12(d) the curve for

type 3c has been omitted for the same reason. As with the other two configu-
rations the ratios decrease with increasing r, but configurations of this
type should be avoided for r < 10.

The ratios for type 4 with the third configuration are shown in figure 11,
and are quite large in all cases except at very large values of D. Note that
for RA = 90° (fig. 11(d)) the error for the regular schedule is independent
of which limbs vy; and Y, are measured to so that only one curve is shown.
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Figure 11.- Ratio of v/0;? + op? for type 2 and type 4 with RA>¢ to /o 2 +on? for type 1.
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Figure 12 presents the same data for type 5 measurements, and, again the
ratios are considerably larger than for the other two configurations. However,
for r 2 10 and D > 25° the type 5 errors are comparable to those for type 1.

The preceding results show that measurements of type 2, 3, or 5 can have
accuracies comparable to that of type 1, provided it is possible to choose the
stars properly. Type 4 measurements appear to be decidedly inferior to the
others and will not be considered further. For type 2 the stars should be
chosen so that B is as near 90° as possible, while for type 5 (regular
as well as B should be as near 90° as possible.
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These conditions are satisfied best when the projection of T onto the X-Y
plane lies near one of the stars. For type 3 the best results are obtained if
the two stars and the planet are nearly colinear with the projection of r
ontc the X-Y plane midway between the two stars. In all cases the results
are poorer when the projection of r 1lies well outside the smaller angle
between the two stars.

The practicality of making a suitable choice of stars has not been
investigated in detail here, but an examination of the star chart in refer-
ence 6 indicates little difficulty if a 90° field of view is available. Reduc-
tion of the field of view to 55° makes it more difficult to locate suitable
stars, and in the case of type 5 increases the minimum obtainable error since

¥y < ¢.

If we assume that the proper choice of stars can be made, then the ratio
of Vor2 + 0,2 for types 2, 3, and 5 to that for type 1 can be held to less
than 2. As 1r increases, this ratio approaches unity over an increasing
range of D because the radial component becomes the dominant part of the
error for all types. In view of these facts it seems reasonable to assume
that the total random error for any of these observation types can be approxi-
mated by the radial error from a single subtense angle measurement. There is
some improvement in the results for type 5 with the extended schedule but the

change is not enough to invalidate this rough approximation.

This approximation used with equation (16) for r = 200 indicates position
errors with a standard deviation of about 0.2 planet radii for each arc second
standard deviation of instrument error, or, in other words, an error of 1 or
2 percent for a 10 arc sec instrument. Thus, within the present state of the
art, the measurements considered in this study are useful to a maximum range
of about 200 planet radii from the central body.

Bias Errors

The computation of the bias errors is complicated by the fact that
different biases may either add or subtract. Therefore, the upper bound of
V5r2 + b,2 was computed by assuming signs on the different biases which gave
the largest total error. The instrument biases in vy, S, A, and D were
assumed to have the same magnitude b, while the bias in B and that due to
irradiance were assumed to be either b or 10b. It was assumed that b 1is
equal to the standard deviation o of the instrument errors discussed in the

previous section.

The ratio of the biases for type 1 measurements to the lo random error
for type 1 were computed and are plotted in figure 13. These ratios are
nearly constant and are approximately (1 + [blf/lbl). This approximation
becomes more accurate as |bj| or T 1is increased.

The ratios of vb,.2 + by2 for the remaining measurement types to o, for
type 1 were computed for the same cases as the random error and are plotted in
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2or figures 14 through 16. Figure 3 shows

that, for the values of r considered,
the type 1 random error is almost
entirely in the radial direction, and
it is reasonable to compare these
- lb|=10b,r=/T0 ratios directly with those in fig-
ures 4 through 12. Note that, as was
pointed out earlier, the type 5 biases
were computed under the assumption
that the entire bias is due entirely
4 to zero calibration error; actually
the ratios for types 4 and 5 will lie
3 somewhere between the type 2 and
type 5 curves, depending on the rela-
lb,l=b,r=10 tive magnitude of the zero calibration
— error. Except for one case (fig. 16(d)),
loyl=b,r=/70 the ratios for by = 10b are about
five times those for by = b and the
value of by 1is not indicated on the
| T T S E S E figures.

[¢] I0 20 30 40 50 60 70 80 90
Declination, deg

o /=100, =10

O O N ®WYwOo
|

Ratio of bigs error to lo random error

2 —_

The ratios for the configuration

Figure 13.- Ratio of bias errors to 1o random errors for ~with RA = ¢/2 (fig. 2(a)) are pre-
type 1 measurements. sented in figure 14. The curves show

the same general characteristics as those for the random errors in figures 4,
5, and 6; that is, types 2 and 5 have singularities at D = 0 while type 3
has a singularity at D = 90°, and the ratios for types 3c and 3d are infinite
because of the singularity when ¢; = ¥5. Increasing r from v10 to 10
(figs. 14(b) and 14(c)) reduces the ratios for by = 1 but has little effect
for by = 10. Note that the smallest value of VErZ + b2 , type 5b with

br = 1, is twice as large as o, for type 1, while if b; is increased to 10
the ratio increases to 11. The biases due to zero calibration error are
reduced by measuring one or both of the star-1limb angles to the far 1limb, but
the reduction is significant only at small values of D.

Figure 15 presents the corresponding data for the configuration where
RA = 0 (fig. 2(b)), and, again, the curves follow the same general pattern as
the corresponding ones for the random errors (figs. 7, 8, and 9). In fig-
ure 15(a) the ratio for type 2 is much larger than that for types 5c and 5d
which is, in turn, much larger than the other ratios for type 5. This fact
serves to show that the bias errors increase in magnitude and spread between
various cases in the same manner as the random errors as a singularity is
approached; in this case B becomes small with increasing D.

The configuration with the projection of T well outside the smaller
angle between the two stars (fig. 2(c)) produced the ratios illustrated in
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figure 16. As in the case of the random error (figs. 10, 11, and 12) the
biases for type 2 and types 5c and 5d are much larger at lower values of D
than those for ¢ = 15° and RA = 0 (fig. 15(a)). The other biases, types 3,
5a, and 5b, are generally a little smaller than for the other configurations.

The upper bounds on vb.2 + b2 presented in these figures are only rough

approximations and represent worst possible cases. However, they do show that
in many instances a bias as large as the standard deviation of the random
error can be the dominating source of position error. Even if we attribute
the entire bias to zero calibration error and use type 5b measurements so that
bp = 0, the bias error is still about twice the random error. An increase in
by causes a large increase in the bias error and every effort should be made
to correct for irradiance bias; even a crude correction would be helpful.

As in the cases of the random errors, the bias errors for measurement
types 2, 3, and 5 can be reduced to about the same value as those for type 1
by the proper choice of stars. Furthermore, the same general conclusions as
to which stars should be chosen to minimize random errors also apply in the
case of the bias errors.

In order to draw any further conclusions with regard to the relative
importance of bias and random errors, it is necessary to make additional
assumptions regarding the numerical values of the biases and standard

deviations. For example, the instrument bias error from the Gemini flight
described in reference 8 averages about 2.25 arc sec or about one third the
average standard deviation. The irradiance error for the Moon as seen from
the Earth is about five times the instrument bias error (ref. 5).

We can use these numbers with equations (15) and (16) to show that the
position bias errors will be approximately twice the standard deviation of the
random errors, and the total rms error is about 2.2 times the standard devia-
tion. On the other hand, if the irradiance error could be reduced by calibra-
tion to about the same value as the instrument bias error, the total rms error
would be about 1.3 times the standard deviation of the random part.

Position Errors Due to Linear Interpolation
The errors caused by the linear interpolation of r and y are dealt with
separately in this section. The derivations of the equations used and some
data pertinent to neglecting higher order terms are given in appendix D.
Interpolation of r— Appendix D gives an expression for Tpjip, the

minimum value of r for which the error in the linear interpolation of 1 is
less than Moy, where o, 1is evaluated for type 1 measurements. The value of
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Tpin is a function of the astrodynamic constant u, the orbital eccentricity,
e, the standard deviation of random measurement errors, ¢, and At, which is
half the time between the observations being interpolated. The computation of
Tmin Yequires the assignment of values to the various parameters involved.
The value of u for the Earth was used since it gives the largest value of
Tpin ©f any major body in the solar system (see appendix C), 10 arc sec was
used for o and values of e were used which cover the range of values
likely to be encountered in manned space flight.

The data in reference 8 indicate that sextant (single angle) measurements
of the same angle can be repeated on the average at intervals of about one min-
ute. Since the alternate measurement of different angles or the simultaneous
measurement of two angles will require more time, rpjp was evaluated for At
of 1, 2, 3, 4, and 5 minutes.

Figure 17 shows the resulting values of rpijp for M = 0.1, plotted as
a function of At for various values of e. It was found (eq. (D9)) that
rmin 1s a function of eAt?2/Mo so that the data can be used for other values
of e, M, g, or At. For example, the
e=100  curve shown for e = 1.0 and M = 0.1
is the same as for e = 10 and

e=50 M = 1.0.
e20 If At is 5 minutes, M = 0.1
e= 10 and e = 0.98, the equivalent of a
e=.5 lunar trajectory, then ryinp®=~11Earth
radii, while if At can be reduced
-

20

fmun. Planet radii
o
T

to 1 minute 7rpjp = 5 Earth radii.
e=. Although these are rather large dis-
e=oo tances, they are only 4.3 hours and
el ; ) 1.7 hours, respectively, from perigee
0 ‘ 2 3 4 5 and T > rpin for most of the tra-
jectory. This is also true for
e = 10, in which case 7rpip®20 Earth
radii for At = 5 minutes and 9 Earth
radii for At = 1 minute. These dis-
tances are about 1.7 hours and
40 minutes, respectively, from perigee. Thus, linear interpolation of r will
produce negligible errors over the major portions of both lunar and interplan-
etary trajectories. For near-planet orbits, where r < 4, interpolation may
be the major source of error unless e 1is very small. For example, if
r=vY2, e =0.1 and At = 5 minutes, the interpolation error would exceed the
measurement error by about a factor of 50. This factor decreases linearly
with e and with the square of At, but there are many combinations of r, e,
and At in the range considered for these parameters for which the interpola-
tion is the dominant source of error. This fact does not necessarily preclude
the use of linear interpolation for near-planet orbits, however, because the
error due to measurement inaccuracy for the model assumed in the study are
quite small near the planet.

Figure 17.- Minimum radius for which linear interpolation
error of radius is less than 0.1 oy.

Interpolation of y- The position error due to the linear interpolation
of y 1is normal to the radius and contains ctn {5 (eq. (D31)), but since the
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radial portion of the measurement
error is usually dominant, it should
also be considered in evaluating the
interpolation error. Therefore, two
expressions were found (eqs. (D32)
and (D34)) for which the interpola-
tion error will not exceed

M/o2 + on2; the value of VorpZ + 0,2
for type 5 was used since it is
usually smaller than that for type 4.

The value of 7rgin in this case
is a function of sin B as well as
e, M, o, and At2, and the last three
terms occur in the expression for
Tpin in the form At</Mc. Thus a
single curve represents a family of
values of M, o, and At, but e and
sin B enter in a more complicated
form.

The resulting values of 1rTpip
are plotted in figure 18 for two dif-
ferent values of sin B. For given
values of e and u, rpi, 1s gener-
ally larger than the corresponding
values in figure 17. If the data
from figure 17 are used in the pre-
vious example, it is found that for
the lunar trajectory, with M = 0.1,
sin B 2 0.5 and At = 5 minutes, Tpip
occurs about 7.7 hours from perigee,
and if At 1is reduced to 1 minute,
the time is about 3 hours. For the
high eccentricity (e = 10) trajectory
the times are 1.8 hours and 45 min-
utes, respectively. For small values
of sin B these times become larger,
but if stars can be chosen to keep
sin B large, it should be possible
to use linear interpolation for vy
with lunar and interplanetary trajec-
tories. For near-planet orbits, the
values of 1rpip are relatively large
compared to those in figure 17, but
the absolute errors due to linear
interpolation at these ranges are
small and may be acceptable.

Potential application- The data
just presented have shown that at
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sufficiently large ranges the linear-interpolation error is negligible
compared to that resulting from measurement errors of 10 arc sec standard
deviation. This fact implies that at such ranges it would be reasonable to
use the alternate schedules for type 5, which employ only linear interpolation,
as described in the section on measurement types. It was pointed out in the
section on error analysis methods that the errors from the alternate schedules
are about the same as those for type 2, thus comparing favorably with the regu-
lar type 5 schedule. Furthermore, some error due to linear interpolation of

r 1is present even when Gibb's method is used for type 5. The linear-
interpolation errors would, of course, become relatively more important if the
instrument errors were reduced significantly or if interpolation intervals
(2At) were larger than 10 minutes. However, these results make the alternate
schedule potentially very attractive.

Velocity Errors

Once the position vectors have been obtained at two different times, the
velocity is obtained by interpolation using Gibb's method. Linear interpola-
tion could also be used to obtain velocity, but, for reasons to be discussed
later, it is not considered accurate enough. The two major sources of error
in velocity are the inaccuracy of the interpolation formula and random measure-
ment errors, the measurement bias errors in velocity being zero. The standard
deviation, oy, of the velocity error is approximately (see eq. (28))

Vo2 + 0n2//§ At. Since this is the case, the data presented for type 1 posi-
tion errors in figure 3 can be used for velocity errors by dividing the verti-
cal scale by V2 At. The ratios of the standard deviations of velocity errors
for types 2, 3, 4, and 5 to that for type 1 are the same as the ratios for the
corresponding position errors given in figures 4 through 12.

The remainder of this section is concerned with the combination of
velecity errors resulting from random measurement errors and from interpola-
tion. For this purpose a further simplification, which was pointed out in the
discussion of random position errors, will be made. It will be assumed that

Vo2 + op2 for each position vector, can be approximated by that of the
radial error arising from a single subtense angle measurement, that is,

osTVr2 - 1.

Since the interpolation error increases with At while the random
velocity error decreases, a value of At can be chosen for which the total
velocity error is minimized. A rough approximation to this optimum At was
obtained by trial and error for a few sample Earth orbits which were chosen to
be circular for ease in calculating the correct r and v.

Table 7 shows these approximately optimum values of At, along with the
associated values of oy, 04, and the errors Av in velocity and Ar in
position that are due to ingerpolation. In the table t, denotes the center
of the interpolation interval while the errors at t3 apply to either end of
the interval, Ar(t;) being omitted since it is zero. The error quantities are
expressed in meters per second and kilometers. The standard deviation of
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TABLE 7.- COMPARISON OF RANDOM ERRORS WITH INTERPOLATION ERRORS

Standard deviations Interpolation errors from

r, At of random errors Gibb's method
earth miﬁ
radii Oy» cp(tz), Gp(tg), Av(ts), | Ar(tsy), | Av(ts),

m/s km km m/s km m/s

v2.0 1 7.3 0.31 0.44 0.2 0 1.3
V2.0 5 1.5 0.31 0.44 .4 6 25.0
V10 10 4.8 2.0 2.9 .3 1 3.2

10 501 10.3 22 31 .0 2 1.8
V103 5001 10.3 220 310 .1 80 8.1
100 5000} 10.3 2200 3100 .3 2510 14.0

instrument errors is assumed to be 10 arc sec, and the interpolation errors
were calculated to an accuracy of about 0.1 m/s and 1.0 km.

The total position error (root sum square of random and interpolation
errors) is smaller at the center of the interval except when 1 = v2 and
At = 5, and in no case is it much greater than 1 percent of the total position
vector. The total velocity error is also satisfactory both at the ends and
the center of the interval, but it is much smaller at the center, indicating
that interpolation to the center of the interval is preferable.

The errors in velocity which arise from the use of linear interpolation
were also calculated at the center and end of the interval and found to exceed
the corresponding error from Gibb's method by one or two orders of magnitude.
Thus acceptable accuracy might be obtained near the center of the interval,
but linear interpolation is not a generally satisfactory method for computing
velocity.

At the smaller values of r the interpolation intervals (2At) used in
table 7 would be no greater than the time required for two sets of observa-
tions; but for larger values of r the time interval becomes much greater.
For example, when 1r = 10, At in table 7 is 50 minutes, and if At were
reduced to 10 minutes o, would be about 50 m/s or about 2 percent of the
total velocity. For r = v103 the random error for At = 10 minutes would
exceed 0.5 km/s. The position errors at the larger ranges appear to be rather
large, but the root sum square of random and interpolation errors is less than
1 percent of the total range.

Equivalent data were not obtained for orbits of higher eccentricity with
the exception of one parabolic case. The interpolation errors in this case
are somewhat higher than for the circular orbit, but a marked reduction in
velocity errors is obtained by using large time intervals in this case also.
For still higher eccentricities the orbit is essentially linear at long ranges
and the velocity interpolation errors will be quite small, again indicating
the desirability of large interpolation intervals.
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The results just discussed indicate that all of the measurement types,
except possibly type 4, can provide satisfactory preliminary trajectories,
provided the time interval between the two position fixes is chosen properly.
For T > v2, At should be 10 minutes or more and the extended schedule would
be of little value. Also, the interpolation should be to a time near the
center of the interval even though this choice reduced the velocity error at
the expense of some increase in position error. If r > 10, the time interval
required to reduce the random velocity error is so large that it would be best
to try to reduce the position error with redundant data before attempting to
determine velocity. The development of such a scheme, however, is beyond the
scope of this study.

For near-planet orbits, where r < 4, the interpolation error from Gibb's
method is not excessive if the interpolation time is near the center of the
interval. Linear interpolation would be the major source of error, and this
error could probably be constrained within acceptable bounds.

Near-Planet Orbits

The data presented have been restricted to r = V2 and special
consideration must be given to cases with 1 < V2. 1In this case the subtense
angle exceeds 90° and the planet disk fills the field of view considered in
calculating data, thereby excluding all of the measurement types except type 3.
While it is theoretically possible to measure angles larger than 90°, it is
questionable whether it would be practical to measure subtense angles of much
larger magnitude.

Since type 3 measurements do not require a view of the complete disk they
can be used at small values of r, but the angle B, separating the planes
defined by r and the unit vectors to the two stars, must be less than the
arc of the planet's disk lying in the primary field of view. The field of
view of the trisextant could probably be increased substantially from the 3°
of the instrument described in reference 7, and if sufficient accuracy could
be obtained, type 3 measurements would be atractive for use in near-planet
orbits. These measurements in effect combine the sextant and stadimeter
measurements of reference 3, and it should be possible to develop a similar
manual computation method for a limited range of eccentricities. The practi-
cality of such a system depends, of course, upon the ease and accuracy of
making the measurements for r < V2.

CONCLUSIONS

An error analysis has been carried out for determining preliminary
trajectories using five different types of measurements. The measurement
type (type 1) consisting of simultaneous measurements of the right ascension,
declination and subtense angle of the planet has been used as a standard of
comparison. The following conclusions can be drawn from the results of the

study:
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1. If the stars used in the measurements can be chosen properly, two of
the remaining methods, the photographic method (type 2) and the trisextant
{(type 3) need a single measurement to provide a position fix having errors
within a factor of two of the standard of comparison.

2. Similar results can be obtained using a standard space sextant
(type 5) to make seven angular measurements and interpolating to achieve a
common epoch.

3. The measurement type (type 4) which makes simultaneous measurements
of one star-limb angle and the subtense angle at three different times and
interpolates is less accurate than the others and offers little advantage.

4. It is best to choose stars such that the projection of the radius
vector T onto the plane of the two stars lies in or near the smaller angle
between them.

5. The proper choice of stars would be enhanced by increasing the
maximum measurable angle from the present 55+° to 90°.

6. For magnitudes of T greater than v2 planet radii and properly
chosen stars, the random position error can be approximated roughly by the
radial error from a single subtense angle measurement. The random velocity
error is roughly the position error divided by half the time interval between
the two position vectors used to determine the velocity.

7. Bias errors, particularly those due to irradiance, can be very
important and every effort should be made to reduce the unknown biases well
below the standard deviation of the random errors. For example, an instrument
with a standard deviation of 10 arc sec is generally regarded as practical and
it would be desirable to reduce the unknown biases to 2.5 arc sec or less.

8. For reasonably small bias errors at distances from v2 to 200 planet
radii from the central body, satisfactory preliminary trajectories (position
and velocity known within a few percent) can be found using any of the measure-
ment types, provided suitable stars can be chosen.

9. For all trajectories except near-planet orbits the hand-held space
sextant can provide satisfactory measurements for determining a preliminary
trajectory. Furthermore, for sufficiently large radial distances from the
planet, linear interpolation is sufficient for determining position, but a
higher order formula such as that from Gibb's method should be used for
velocity.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, July 9, 1971

45



APPENDIX A
EQUATIONS FOR POSITION FIX

It is pointed out in the text that some types of measurements require
interpolation to refer the measured angles to a common epoch. The equations
for the position fix are derived in this appendix under the assumption that
the interpolatidn has already been carried out or, equivalently, that all of
the angles used were measured simultaneously.

DETERMINATION OF RANGE

For all five types of measurements the radial distance, T, of the planet
center from the spacecraft is ultimately determined from the semisubtense
angle, S, as shown in sketch (d). All the equations in the report involving

S Planet

Spocecraft

_R
sin S =

Sketch (d)
r have been normalized by defining the unit of length to be the radius of
the observed planet, that is, by setting R equal to unity. Consequently,

r = csc S (A1)
COMPUTATION OF THE UNIT VECTOR u

Type 1 Measurements

Type 1 measurements are direct measurements of RA, D, and S, and it is
shown in the text that

cos RA cos D

u =
u, = sin RA cos D (A2)
ug = sin D
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Type 2, 3, 4, and 5 Measurements

These types of measurements are direct measurements of the star-limb
angles vy; and y,, and, with the exception of type 3, the direct measurement

Star #

Star# |
/

7/

X/

2

of 2S. For type 3, B 1is measured
instead of S, which must then be
computed from vy;, ys, and B. The
details of this computation will be
discussed in the next section, but
for the present it will be assumed
that S 1is known. Figure 1 is
reproduced for aid in deriving the
equations for the components of u.

First the star-center angles
and ¢, are computed using the
relationship

where kj =1 for y; measured to

the 1limb nearest the star and kj=-1
for measurements to the far limb.

The angle, ¢, between the stars is taken from tabulated data, and it can be
shown by spherical trigonometry that

cos Y3 = cos RA cos D
(A3)
cos Yo = cos(¢ - RA)Jcos D
or
cos Y, = cos RA cos D cos ¢ + sin RA cos D sin ¢ (Ad)
Substitution in (A3) and (A4) for cos RA cos D and sin RA cos D from
equations (A2) gives
u; = €os Yj (A5)
cos Y, - cOs Y COS ¢
A 7 Ml A
U2 sin ¢ (A6)
Since u is a unit vector
ug = + V1 - u;? - uy? (A7)

Combining equations (A5), (A6), and (A7) into a single vector equation gives
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[cos [2] 7]

COS Py - COS Y1 cos ¢

sin ¢ (A8)

cl
1}

ilfl—U]_z-UZz

5 i

Special Computation for Type 3
In the case of type 3 measurements, yj, Y2, and B are measured
simultaneously, and S must be calculated. The law of cosines for spherical
triangles gives
cos ¢ = cos P; cos Y, + sin P; sin P, cos B (A9)
or

cos ¢ = cos(yy; + kyS)cos(yp + kpS) + sin(y; + k1S)sin(y, + kyS)cos B
It can be shown that since ki = *1

cos(yi + kiS) = cos(kivyi + S)

ki sin(kiyi * S)

sin(y; + kiS)

so that

cos ¢ = cos(kyy; + S)cos (k,y, *+ S)

+ kikso sin(k, v, + S)sin(kZY2 + S)cos B (A10)

Expanding the trigonometric functions of sums of angles in equation (Al0)
with the appropriate formulas gives

cos ¢ = (cos lel cos kyy, + kjky sin lel sin K,Y, cos B)cos?2 S
- (sin k;v; cos k2Y2 + cos kj;y; sin kzyz)(l - kjks cos B)sin S cos S

+(sin kiy; sin k,y, + kika cos kyy; cos k,y, cos B)sin? S (A11)

We note that
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cos2 S = 1 + cos 25
2
sin2 § = 1_‘;2& L (A12)
sin S cos S = EEE§Z§- J

so that

2 cos ¢ = cps(kyy; - kyvy) (1 + kikp cos B)

+ cos(kyyy *+ kyv, + 25)(1 - kyky cos B)

2 cos ¢ - cos(kyyy - koyp) (1 + kyky, cos B)
' 1 - kiky cos B

cos (kyyy; *+ kyy, + 28) = (A13)

Once equation (Al3) has been solved for S we can compute ¢; and ¥, and use
equations (A5) and (A6) for wu; and u,. Equation (A8) can be used for wuj3 or
the law of sines for spherical triangles can be used to show that

sin ¢; sin ¢, sin ¢

sin D = - sin B
so that
Equations (A5), (A6), and (Al4) can be combined to give
-;os Y1 ]
o cos P, - COs Yy cos ¢ (A15)

sin ¢

*sin Yy sin P; sin B

L sin ¢ |

Equations (A8) and (Al5) are equivalent and the one to be used for type 3
measurements could be chosen for ease in computation.
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APPENDIX B

INTERPOLATION FORMULAS FOR POSITION AND

VELOCITY FROM GIBB'S METHOD

Following the approach given in reference 9 (p. 147), we expand the
position vector, T, in a series in time as follows:

F(t) = a+ bt + ct? + dtd + . . . (B1)

We assume that r(t;) and f(tg) have been calculated from measurements and
wish to determine T(t,) by means of interpolation. For convenience assume
that to = 0 and write

it
ot R

r(ty) + bty + cty? + dt;3
T(ty) = a (B2)
T(t3) = a + bty + cty? + dtj3
Differentiation of equation (Bl) twice and evaluation at t;, t,, tj
gives
T(ty) = A(ty) = 28 + 6dt;
T(ty) = A(tp) = 2c (B3)
T(t3) = A(t3) = 2C + 6dts

where A 1is the vector of gravitational force acting on the spacecraft, which
can be calculated if the corresponding T (plus necessary ephemeris informa-
tion in n-body cases) is known. Therefore A(ty) is unknown, but the first
and third of equations (B3) can be solved for ¢ and d in terms of known
quantities to give

-1 [t3A(t1) - t1A(t3) ]

€=2 t; - t;

(B4)

!
—

|

b

and from equations (B2)

[T(t3) - T(t1)](t3 - t1) = btz - t1) + c(t3? - t12) + d(t3® - t;3)  (BS)

50



Equations (B4) and (B5) can be solved for b, which is equal to the velocity
at t,, giving

_ 1 _ - A(t A(t3)
b=v(ty) =t —¢- [r(t3)-r(t1)- (61)(2t32+2t1t3-t12) -—— (ta?-2tyt3-21,%)
3 1
(B6)
We can solve for a by substituting for b, ¢, and d in the equation for
either 1r(t;) or r(ts3) giving
- - 1 - - A(t A(t
a=r(ta) =% [t31‘(t1)-t11”(t3) - (61) tita(ty-2t3) - (63) t1113(2'C1-’C3)jl
3-t1
(B7)

Note that equation (B6) can be solved with either t; or t3 set equal to tj,
which has been taken to be zero; that is, given 7T (t;) and r(t3) Gibb's method
can be used to find the velocity at either end of the interval. In this case
interpolation of T 1is unnecessary, and the solution of equation (B7) is
trivial.
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APPENDIX C

FORMULAS FOR EVALUATING MEASUREMENT ERRORS

This appendix is divided into four sections. The first section shows
that the acceleration terms resulting from Gibb's interpolation method can be
neglected in computing the errors in position and velocity. The next section
gives derivations of the formulas used for evaluating position errors result-
ing from measurement errors when only enough data are obtained for a single
position fix. The third section presents derivations of equivalent formulas
for the extended schedules. Finally equations are developed for evaluating
the errors in determining velocity.

SIMPLIFICATION OF ERROR FORMULAS FOR GIBB'S METHOD

The purpose of this section is to show that the acceleration terms from
Gibb's method can be neglected for the purposes of computing errors resulting
from instrument inaccuracies. We differentiate equations (7) and (10) to get

_ 1 _ - dA(t dA(t
dr (tp) == [t3dr(t1)—t1dr(t3) -————é—ﬂ tits(t1-2ts3) ~~6—ﬁ t1t3(2t1-t3)]
37t1
(CL)
and
- 1 - - dA(tq)
dv(ts) = t3-t1 [dr(t3) - dr(t;) - % (2t32 + 2t 1ty - t12)
) dAét3l‘(t32 - 2tity - 2t12)} (€2)
If conic orbits are assumed and
T = ru
then
1. bu
A= 2
and
- di (t; 2G(t;)dr (t;)
dA(ti)=-u[2(l) - 2lta)drln ]
e (t;) re(t;)

Substitution for dA(t;) and dr(ti) in (C1) and (C2) gives
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1

- - P -
dE(t2) = Ty [tar(tl)du(tl)(l + 71>+ t30(t1)dr(ty) (1 - Py)

- P -
-tlr(t3)dU(t3)<1+'j%> - tju(tz)dr(t3) (1 - Pz{]

4 (ts) = Hr [r(t3)da(t3)<1 + P73) + dr(t3)u(ts) (1 - P3)

- P -
_r(tl)du(t1)<1 + —23-> - dr(tyu(ty) (1 - Pq)]

where

Py = 3r32t1) (t1% - 2tit3)
Py = g;g%;;; (t3? - 2tits)
Py = E}g%ng'(t32 - 2tytg - 2t;2)
P, = E;E%EIT (t12 - 2ttty - 2t32)

f We wish to know when the Pj are negligible with respect to unity. If we let
| t; = t3 - 2At, thereby defining 2At as the interval between t; and ts,
then 0 < t3 < 2At and

|t12 - 2tytg] = |4at2 - t32| < 4At?

|t32 - 2tits] = |4taAt - 32| < 4A¢?

|t32 - 2tity - 2t32] = |-8At2 + 12t3At - 3t32] < 8at2

|t12 - 2t1tg - 2t32] = |4At2 - 3t32| < 8at?

Therefore we wish to know when 8uAt2/3r3 is negligible compared to unity.

The values of u for the major bodies in the solar system, in units of
(planet radii)3/sec?, are tabulated below in order of decreasing size.
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Body u (planet radii)3/sec?
Earth ' 1.54x1076
Mercury 1.49x1076
Venus 1.37x10°6
Mars 1.18x1076
Moon 0.993x106
Neptune 0.403x10-6
Sun 0.394x10-%
Jupiter 0.349x10°6
Uranus 0.280x10~°
Saturn 0.112x10-

This table shows that the maximum value of p is that of the Earth so that

8uat?

0-6 At2
3r3

< 4.11x1 3
T

If the acceleration term is to be less than 0.1, then, in seconds,
At < 156 132

and for r = ¥2 the interval (2At) between t; and t3 1s about 8.4 minutes.
This would require two type 3 measurements no more than 8.4 minutes apart
while two independent sets of type 5 measurements would require the individual
measurements to be about 1 minute apart. For 1 = 2, At 1is increased to

7 minutes, requiring type 5 measurements at 2 minute intervals. If interpola-
tion is carried out to the center of the interval, the maximum acceleration
term is reduced to upAt?/r3 and At is increased by 60 percent. Therefore,
even for near planet orbits, it is reasonable to neglect the acceleration
terms in most cases. Equations (Cl) and (C2) may be written

@ (tp) = L) - Hdr(es) (c3)
v (t,) = dr(t3) - dr(t1) (c4)

t3 - 6
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POSITION ERRORS FOR REGULAR SCHEDULES

In the text the radial and normal components of the position error due to
measurement bias are defined as by and b, respectively. To compute by and
b, set the random measurement errors equal to zero in which case

br=dr

and (see eq. (13)) (C5)

by = r/du;2 + du,? + duj?

Since the random measurement errors produce no mean position errors, the
standard deviations of the components of position error are given by

op = vE(dr?2) - b2

(Co)

il

on = /r2E(du;? + duy? + duz?) - b2

the equations for by, by, or and o are derived by substituting the measure-
ment biases and random errors into the appropriate differentials as shown in
the following paragraphs.
Type 1 Measurements
For this type of measurement
r = csc S (C7)

and differentiation gives

dr = ctn S ¢sc S dS = -r/r?2 - 1 dS (C8)
From equations (14) in the text

ds = 85 + by + bg

Therefore,
E(dr?) = [0g2 + (b + bg)?]r?(x? - 1)
and
b. = -(by + bg)rvr? - 1 (C9)
so that

oy = ogr/r? - 1 (€C10)
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From equations (2) in the text

cos RA cos D

uj
up = sin RA sin D
usz = sin D

Differentiating and substituting for dRA and dD gives

du; = -(8gp + bpp)sin RA cos D + (8p + bplcos RA sin D
du; = (8gp + bra)cos RA cos D - (8p + bp)sin RA sin D
duz = (8p + bplcos D
so that
dui? + dup? + dug? = (8p + bp)2 + (Spa + bpa)? cos? D
therefore
by = 1/bp? + b3, cos? D (C11)
and
Op = T ODZ + oﬁA ;552_5 (C12)

Basic Equations for Types 2, 3, 4, and 5

All the types of measurements except type 1 use the same basic position
fix equations, namely (C7) and

u; = cos Y (C13)

Uy = E)_S_lp_z\__fis\ _\BJ-AES_(D (Cl4)
cos ¢

uz = * /ﬁ - up? - ﬁzz (C15)

It is shown in appendix A that for type 3 we can also write

sin yj sin Yo sin B
uz = #* : -
sin ¢

but the derivative of this expression and that of (Cl5) are identical so only
(C15) will be considered.
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The expression for dr is given in equation (C8) and differentiating
equations (Cl3), (Cl4), and (C1l5) gives

du; = -sin y; dy; (Cle)
sin ¢, dy,

duy, = - W - duj ctn ¢ (C17)
(ujduy; + uoduy)

dug = - - L1 220 (C18)

us
From equations (Cl5) and (C18)
dup? + dup? + dug? = — [(1 - wp2)du? + (1 - w?)dup? + 2ujup duy dug)
u
3

Substituting for du; and du, from (C16) and (Cl7) gives

1

5 d?y; sin? Y[ (1 - uy?) + (1 - u3?)ctn? ¢

du;2 + duy? + duz? =
u
3

M (1 - UIZ)

-2uju, ctn ¢] + dy,? sin? §

_ 2dy; d¢p sin ¥y sin Yy

sin ¢ [(1 - uyP)ctn ¢ - uluz]]

(C19)

If substitutions are made for wuj; from (C13), u, from (Cl4), uz from
(Al14) and cos ¢ from (A9), equation (Cl9) is reduced to

2
rz(dul2 + du22 + du32) = _TEE_E (dlpl2 + dwzz - 2dy; dyy cos B) (C20)
sin

The appropriate expressions for dy;, dyp, and ds can be substituted into
equations (C8) and (C20) in order to find by, bp, or and o5 for the
different measurement types.

Type 2 Measurements

In this case measure vyj, Y,, and S simultaneously. The equation for
dr is the same as for type 1 so that (C9) and (C10) are used for by and op.

From the definition of the star-center angles
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Y1
Yo

(€21)

Y2 + koS

Differentiating and substituting the differentials from equations (12) gives

dpy = (6y + by) + ki (85 + bs)
(C22)
dyp = (S + by) + ko(S5 + bg)
Substitution of dy; and dy, into (C20) gives
r
by = grig (b1 + kibg)2 + (by + kybg)? - 2(b; + kybg) (by + kybg)cos B]1/2
(C23)
and
r .
n = I E [ZoY2 + 2052(1 - kik, cos B)]1/2 (C24)

Type 3 Measurements

With this type of measurement <vyj, Yo, and B are measured and S must
be calculated from equation (6) which is

2 cos ¢ - cos (lel - szz) (1 + kll,k,z;AC_o,,SA_E)_
(1 - k;k, cos B)

COS(lel + k2Y2 + ZS) =

If this expression is differentiated, it is found that

_ 1 sin(kly1 - szz)(l + klk2 cos B)
ds = - E-{(k1dY1 +kodyo) + (k1dy; _kdeZ)[;in(k1Y1+k2Y2+ZS)(l—kiiz»ibzﬁB)
. dBk k, sin B[2 cos (k;v; - kzyz)r- 2 cos ¢] } (€25)
sin(kyy; + kpys + 28) (1 - kik, cos B)?
It can be shown from equations (C21) that
kyv; = kyyp - S
(C26)
kovp = kap - S
Substitution of equations (C26) into (Al0) gives
cos ¢ = cos kyyP; cos ko + kyiks, sin ky¢; sin koo cos B (C27)
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Equations (C26) and (C27) can be used to reduce (C25) to

_ 1- Sin(klwl"kzwz)(l‘fklkz cos B)
as = - 3 {0 e vio ava) + Gaan - dv) SR A e e ]

+ 2 sin Y1 sin Yo sin B dB
sin(ky1y; + kov2) (1 - kiky cos B)

If we define

Sin(klwl - kzwz)(l + k1k2 COoS B)

P1 = Sin(ki¥; + Ko¥o) (1 - kik, cos B)
and
_ sin y; sin Y, sin B
°2 7 Sin(ki¥; + ko¥o) (1 - kik, cos B)
then
ds = - 2 [k dyy (1 + py) + kp dyp(1 - p;) + 2 dBp,] (C28)
and
dy, - k.k, dy
dy, = dy; + k; ds = < L é 2 2> (1 - py) -kypp dB
dy, - k k, dy
dyy = dyy + kp ds = < 2 é 2 1> (1 + py) -kopp dB

Substituting for dy;, dy,, and dB from equations (12) gives
1
ds = - 5 [k1 (81 + b1) (1 + p1) + k(83 + D) (1 - p1) - 2by + 2(Sp + bplez]

3\
~ -

(8, - k,k,8,) + (b, - k,k,b,)
lel 1 17272 5 1 1272 a - pl) _ (‘SB + bB)klpz

- -

b (C29)
(8, - kik,87) + (b, - kik,by)]
diy 2 1k2684) . (by 1Koby J (1 + p1) - (8 + bpkaps

L

1l

When equations (C29) are used with (C8) and (C20), it is found that
br = -r/r2 - 1 ’%‘ [k]_b]_(]. + pl) + k2b2(1 - pl) + Zbez - ZbI] (C30)
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g2 1/2
op = T/r? - 1 [% (1 +p12) + Gszzz] (€31)

[(1+03%) + kiky (1 - p;2)cos B]

_ T (kyby - kyby)?
N~ sin B 2

+ 2bg(kiby - koby)pipa (1l - kiky cos B)

172
+ 2bp2p,2(1 - ki1ko cos B) (€32)
B P2 2
T
n = Sin E'lcyz[(l +p12) + k1ka(1 - p12)cos B]
172
+ 20g%p5% (1 - kiky cos B) (€33)
B P2

Type 4 Measurements

This method consists in measuring S and y; at times t; and t3 and
interpolating to find cos ¥, at t; while we measure S and Y, at tp.
Therefore dy, and ds are the same as for type 2 and by and o, are given by
equations (C9) and (C10).

Cos yj(ty) is given by equation (9) as

ut,t
cos ¥ (ty) = ;7}3—%—;37'{r1[%3 - 6i33 (ty - 2t3{]COS ¥y (ty)

utlt
- TS[%I " or 33 (tz - 2t1{]COS wl(ta)]
3

It was shown earlier in this appendix that the term involving u/r3 can be
neglected in computing the errors. Thus, replacing r by 1/sin S

sin S(tj) [ts cos P (t1) cos wl(t3)] (C34)

cos ¥ (ty) = ts - t; sin S(t;) ! sin S(t3)

Differentiate (C34) and then, since relatively small time intervals are
considered, it can be assumed that ¥ (t;) = ¥3(t3) = ¢ and S(t;) = S(t3) =S.
This gives
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t, dS(t -t; dS(t
dy; (tp) = -dS(tp)ctn y¥; ctn S-+[ 3 98¢ ii ~ il ( 3)] ctn §; ctn S

.\ ty dy;(ty) - t; dy; (t3)
7t3 -t

(C35)

Since the biases are constants, equation (C20) can be used- to write
dyy (ti) = [61(t3) + by] + k;[85(ti) + bs] and from equation (12)

dS(tj) = 8g5(ti) + bg + by

Substitution of these expressions into equation (C35) gives

t38s(t]) - t8s(ty)
t3 -t

dy (ty) = [ ] (k1 + ctn ¥; ctn S)

t381(ty) - t38;(t3)
t3 -ty

-8g(ty)ctn ¥ ctn S + [ ] + by + kibg (C36)

From equation (C22)

dyo (ta) = [82(tp) + kpSg(ta)] + (by + kybg) (C37)

It can be seen that the bias terms in equation (C36) are the same as those for
dy; 1in equations (C22) so that b, 1s given by (C23). Substituting equa-
tions (C36) and (C37) into (C20) gives

2 2
op = —— o 2|1 + Eé__:_fl__ + 0.2 |ctn? (2] ctn? S + 1
N~ sin B | v - 2 S

(t3 ti)

P 1/2
+ z%————;ljg'(kl + ctn $; ctn S)2 + 2kp ctn ¥ ctn S cos é]} (C38)
3 7 t1

The quantity (t3? + t12/(t3 - t;)?) varies from a maximum of unity for t; or
t3 equal to zero to a minimum of 0.5 for -t; = t3 = At. Since the latter
would be more nearly true in practice, the results will not be greatly
degraded by making this approximation, in which case
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T 3 o'Sz
= — 2 2 - 2 _ 2
°n = IIn B {2 0,5 * [}(r Dctn® ¢ + 3

172
+ 2 /r2 - 1 ctn ¥;(2ky cos B + kl]: (C39)
If 1y, is interpolated instead of ¥j, it replaces ¥; in equation (C39).

Type 5 Measurements

The schedule for this method is as follows:

Time t1 | to It3 Itq=0 lts lt6 ‘t7
Angle
measured | © | V1 [ S Y2 [S IVE 1 5

If the intervals between the t; are assumed equal, then from linear
interpolation

+ w
(e = L)+ 9 (E)
4ty = B(t3) . ds (ts) (C40)
15 (tg) = ds (ts) ; ds (to)

Since r = csc S(ty), equations (12) and (C40) give

dr = -r /r2 - 1 [6S(t3) * 8s(ts) + by + bs]

2

from which

by = -(by + bs)r Jr2 - 1 (C41)

and

Oy = O T [/ ——— (Ca2)
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Equation (C20) can be used for this type of measurement if t;, t,, and
ts are replaced with to, ty, and tg, respectively, Then using equa-
tions (C40) for the appropriate dS(t;) gives the equation

1 ¢ctn S
4

avy (ty) = <Y [dS(t;) - dS(t3) - dS(ts) + dS(ts)]

+ 2%‘[ds(t1) + dS(t3) + dS(ts) + dS(t7)]

. [dvl(tz) ; le(tG)]

Substitution for the differentials from equations (12) gives

k
dp (t,) = SBVLC S 15 (11) - 65 (t3) - 85 (ts) + 85 ()] + 5+ [5(t1) +8s(ts)
51(tp) + 81(te)
+ 8s(ts) *+ 85(t7)] + [ 1t2) 2 %10 ] + by + Kybg

Similarly, it can be shown that

5. (ta) + S (te)
dyo (ty) = 6o (ty) + kz[s'*i——f——é——é—] + by + kobg

The bias terms in these equations are the same as for types 2 and 4 so that
bp 1is given by equation (€23). Using d¢j(ty) and dy,(ty) in equation (C20)
gives

172
3042 02
On = sii B { g + z Brz - l)ctn2 Yy + 2k2(/r2-1 ctn Y1 - ky)cos B + 3]}

(C43)

Position Errors for Extended Schedules

It was pointed out earlier in the computation of instrument errors that
the acceleration terms from Gibb's method may be neglected to give a formula
of the form

dr(ty) = S

(C44)
from which

t32|dE(t))2 - 2t,t5[dF(t)) - dE(ty)] + t2[dE(t5) |2
(ty - t;)2

ldr(t2)]? =

If we assume that t3 = -t; = At then
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_ dr 2 dy . d¥ T 2
ldE(ep) |2 = |dr(ty) ]2 + 2[dT(t;) . dr(tg)] + |dT(t3)] (c45)

By definition

r=Tru

dr = dr u + r du

and u and du are orthogonal. Therefore we can write

|dr(ti)]? = dr?(t;) + r2(ti)|du(t;)|? (C46)

and
dr(t;) - dr(ts) = dr(t;)dr(tz)[u(t;) - u(tz)] + r(tg)dr(t;)[a(t;) - du(ts)]

+ T(ty)dr(t3) [u(ts) - du(t;)] +r(ty)r(ts) [du(t;) - du(ts)]

(C47)
If the change in true anomaly between t; and tg is small, then the
approximations may be made that
u(ty) - u(ts) =1
u(ty) - du(tz) = u(tg) -« du(t;) =0
r(ty) = r(ty) =r(tz) =1
Then equation (C47) reduces to
dr(ty) - dr(ts) = dr(ty)dr(t3) + r2 du(t;) - du(ts) (C48)

where the first term on the right-hand side comes from the radial components
and the second from the normal components.

Equations (C46) and (C48) can be used to separate equation (C45) into its
radial and normal components to give

2 2
ar? (t,) = [dr(tl) ; dr(tg)] C2@2 - [dS(tl) ; dS(t3)] €49)

and

T2[|dB(t;) |2 + 2di(ty) . du(ts) + |du(t3)]2?]
L : , ALEEANE]

r2|du(ty)|? = (C50)
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The terms r2|du(t;)|? and r?|du(t3)|? can be found by substituting the
proper time arguments into equation (C20), and if equations (C16), (C17), and
(C18) are used with the proper time arguments,

[di(e1) - di(ts)] = —5— {aby (£1)dby (£3) + Ay (£1)dby (£3)

- [dyy (t1)dea(t3) + dyy(tz)dyo(ty)]cos B}

Making these substitutions into (C50) results in

- 2
r2|du(ty) |2 = ———— ([dy1(t1) + dv1(t3)]12 + [dp(t1) + dip(t3)]?
4 sin< B

-2[dy; (t1)dyo (t1) + dy; (t3)dyp(t3) + dyg (ty)dvo (t3)

+ dyy (t3)dy, (t;)]cos B} (C51)

Since biases are constants, it can be seen from equation (C49) that b, is

the same as for a single measurement of S and, hence, is given by (C9).
Likewise, examination of equation (C36) shows that the biases in dy; are not
affected by interpolation so that b, is given by (C23). We can evaluate

or and o, for types 4 and 5 with the extended schedule by setting the measure-
ment biases to zero and taking expected values in equations (C49) and (C51).

Type 4 Measurements

The extended schedule for this type of measurement is

Time l t1 to l ts L ty ts
Angles measured Yl,S Y555 Y1,5 ] v2,S
Angle computed Y1 Yo Py Yo

In this case interpolate to get ¢;(ts), and use it with ¢;(ty) and S(ty) to
compute T (tp). Then interpolate to get Y, (ty) for use in computing T (ty).
The assumptions made in deriving equations (C49) and (C51) require that

ty = -ty = At/2 and tsg = t; = 3At/2.

Substituting the appropriate time arguments into equation (C49) gives

dr2(t3) = r2(x2 - 1)

[dS(tz) ; dS(tq)]z

and since S(t,) and S(ty) are measured directly the random components are
independent and

65



/r2 —
Oy = OgT 3—5——1 (C52)
If we omit the biases and assume the values of tj given above, then
S5 (ty) + 6g(t
dy; (tp) = [ s (t1) 5 ~5~(»—‘*-)](k1 + ctn y; ctn S)
§, (t + &, (t
-8g(ty)ctn y; ctn S + [ 1 () 5 1 “)]
dyp (t2) = 8(t2) + kodg(to)
dyy (ty) = 81(ty) + kidg(ty)
§s(ty) + Ss(t
dyy (ty) =[ s (t2) 2 s ( 5)] (ko + ctn ¥ ctn S)
6y (t + &7 (t
-85 (ty)ctn Yy ctn S + [ 1 (tp) > 1(5)]
When these differentials are substituted into (C51) we can show that
LN 2 os? 2 2 2
Op = >sin B ‘SOY + > [(r% - 1)(3 ctn Yy + 3 ctn® Yy
+ 4 ctn P; ctn Y, cos B) + /r2 - 1 (4k; + 6k, cos B)ctn ¥;
1/2
+ /r? - 1 (4k, + 6kp cos B)ctn ¢, + 10]: (C53)
Type 5 Measurements
The extended schedule for this type of measurement is:
Time ti |ttty ts] te ]| t7 | tg tgl
Angle measured | S Jvyi | S {v2] S}{v1{S {vya]S l
This schedule is the same as for type 4 except that in order to compute Uj

associated with each measured vj
values at adjacent times.

compute

66

we must interpolate S

using the measured

_ t Then following the procedure used for type four we
r(ty) and r(tg) and then interpolate to get r(ts).



Substituting the appropriate time arguments into (C49) gives

ds(ty) + dS(tg) ]2

dr2(tg) = r2(r2 - 1) [ >

and taking account of linear interpolation

dr2(ts) =

22 - 1) [dS(t3) + dS(ts)  dS(ts) + dS(t7)]2
2 2 2

Assuming the biases to be zero and taking the expected value gives
2 _
op = Osr/S(r—sL)' (C54)

Similarly, by making the proper substitutions into equation (C51) we can show
that

2

[(r2 - 1)(2 ctn? y; + 2 ctn? Y,

- T 2 Os
°n = 7 5in B {SGY * 3

+ ctn Y; ctn P, cos B] + 5/r2 - 1 (k; ctn ¢o + ky ctn yi)cos B

1/2
- 15k;ky cos B + 20 (C55)

VELOCITY ERRORS

The errors in velocity are determined by differentiating equation (10).
It was shown earlier in this appendix that, for the purpose of computing the
position and velocity errors due to measurement errors, the acceleration terms
in equation (10) may be omitted. The resulting equation is of the form

- df (ts) - dT(tp)
dV2 = ts - tl

(C56)

Since the bias errors are constants, it can be seen from (C56) that there
are no errors in velocity due to measurement biases. Therefore we will com-
pute the random errors in velocity under the assumption that the biases are
zero. Hence,

|dr(ts) |2 - 2[dr(t;) - dr(t3)] +[dr(t;)]?

_ 21 _
E[|dv(tz)|?] = E (ty ~ )2

(C57)
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If 7r(ty) and r(t3) are determined from two independent sets of measurements,
which is the case except when the extended schedules are used, the random
components of dr(t;) and dT(t3) are independent, and the expected value of
the dot product is zero.

From equation (13)
ldr(ti) ]2 = dr?(ty) + r2(ty) [duj?(ti) + dup?(ti) + duz?(tji)]

so that substitution from (14), assuming b, = b, = 0 into (C57) gives

E[|av(t2)]] = 2 /2002 + on?)

If At 1is defined by

tz - t] = 20t

then
B[ldv(t) |1 = & 353—5—393 (C58)
Similarly, if the acceleration terms are neglected,
dE(ty) = t3df(tlzt— tydr(tg)
and
a2ty ]2 = t32]dr(ty) |2 - 2tytg[dr(ty) - dr(tz)] + t;2|dr(ts)]? (C59)

4At?

Therefore, for two independent sets of measurements and assuming by, = b, = 0

.2 + t42  Jgo2 + g2
= 1 3 r
E[|dr(t2)]] =j/ e ,// — (C60)

From equations (C58) and (C60)

E[|dT(t,)]]

E[|dv(ty)|] = T
ti1c + t3

(Ce1)

The quantity (t;2 + t32) varies from a maximum of 4At? for interpolation to
one of the ends of the interval, where t; = t; = 0 or t3 =1ty =0, to a
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minimum of 2At2 if ty = -t; = At. Therefore, for interpolation to the center
of the interval

E[|dv(t
U__(ZM = _A'lf (C62)
E[|dz(ty)]]

While for interpolation to the ends of the interval the ratio is reduced by

Y2. Note that this change is caused by an increase in the standard deviation
of the position error while that of the velocity remains the same.

For the extended schedules assume that t3 = -t; = At so that
equation (C59) reduces to (C45), while (C57) is the same except that the sign
of the dot product is reversed. Making this sign change in the derivations
for the standard deviations of the position error gives for type 4 measurements

osr fr2 - 1
°r T At 2

2
t - r 2 05 2 _ 2 2
°n’ T ZAt sin B lSGY + —— [(r? - 1)(3 ctn® y; + 3 ctn? Y

-4 ctn Y; ctn P, cos B) + vr?2 - 1 (4k; - 6k, cos B)ctn Y,
172
+ /r2 - 1 (4ky, - 6k; cos B)ctn ¢2-+10]}

For type 5 measurements
r oAt 8

2
g
'——r__ 2 S 2 _ 2 2
°n’ < 2t sin B {SUY + —— [(@% - 1)(2 ctn? y; + 2 ctn? Yy

-ctn ¢; ctn Y, cos B) - 5/r? - 1 (k; ctn Yy + kp ctn Yy)cos B

172
+ 15k1ks cos B-+20]}

where o,' and o' are the standard deviations of radial and normal errors in
velocity. Numerical evaluation over the range of measured angles considered

indicates that if t3 = -t; = At then equation (C62) holds for the extended
schedule within a factor of 2.
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APPENDIX D
EQUATIONS FOR ANALYSIS OF ERRORS DUE TO LINEAR INTERPOLATION

The purpose of this appendix is to compare the magnitude of position
errors arising from the linear interpolation of the range r or a star-limb
angle Yy with the errors due to measurement inaccuracy. Since the interpola-
tion errors are a function of the spacecraft trajectory, the state of the
vehicle must be accounted for. This has been done by finding the minimum
value of r for which the maximum interpolation errors are less than some
fraction, M, of those due to measurement inaccuracy. An expression for the
error was found in terms of the gravitational constant u, the true anomaly
8, the orbital eccentricity e, the range r, and At which is half the
interpolation interval. The largest value of 1, in (planet radii)3/sec?, of
the major bodies in the solar system was used, and ©6 was chosen to maximize
the error. This choice of 6 was made in order to simplify the calculations.
The minimum value of 1 was then found for various values of eccentricity and

At.

The errors in range, which can be evaluated directly from a Taylor series
expansion of r, are considered in the first section. Errors due to linear
interpolation of vy are dealt with in the second section by an indirect
method because the Taylor series expansion of <y contains a singularity.

Interpolation of Range
If r(t) is known at times t; and ts, an appropriate value, T(ty), can

be obtained for =r(t;) under the assumption that r 1is a linear function of
time. Then

(t3 - tz)r(tl) + (tg_i ?1)Iﬂt3)
t73 -t

i‘('Cz) =

and if tp, = 0

R tar(ty) - tir(ts)
B(tp) = (01)

Since r 1is not a linear function of time, we can estimate the error in
T(t,) by expanding r in a Taylor series about tp,. This gives

2 3
t17 . t -
r(ty) = r(tp) + t1i(ty) + - Fltp) + 23— F(ta) +

2 3 (D2)
. t3 . t3 eee
r(tz) + t3r(t2) + 7;— r(tz) + ? T(tz) + .

r(t3)
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Substituting (D2) into (D1) gives

n - tits .. titz(t; + t3)
r(tp) - r(tz) = T(t2) v - r(t2) 3
or, dropping the time argument,
. it t,t
S e =2 (t1 + t3) (D3)

This is the error in interpolating with a first-order formula as compared with
a third-order formula such as those derived by Gibb's method. It should give
a good indication of the total error when (t3 - t;) is small. Note that if

t, lies at t; or t3 or half way between t; and t3 (-t; = tg = At), the
third-order term disappears. Define Ars and Ary as the maximum values of
the second- and third-order terms, respectively, in equation (D3) and deter-
mine the minimum value of r for which |Ar,| < Mo,. In this case o, is the
standard deviation of position error due to a single subtense angle measure-
ment of 10 arc seconds standard deviation. Next find the minimum value of r
for which |Ar3|max is negligible compared to IAr2|maX and hence compared to
the measurement error. If this latter condition is true, then the second-

order term is a valid representation of the total interpolation error. If the
trajectory is assumed conic

h2
=0 + e cos 0) (D4)
. ue sin O
. ue cos O
r = r—z (D6)

. 2u2e2 sin 6 cos 6  upeh sin 6
r = - 3 - L
hr T

or substituting for r in the second term from (D4)

2 .
o= o- %ﬂ (3¢ cos 6 + 1) (D7)
hr

where e 1is the orbital eccentricity, & 1is the true anomaly and h is the
angular momentum.

From equations (D3) and (D6) the second-order error is

tits pe cos 6
2 T2

AI‘2=-
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and tjtg is maximum for t; = tz = At so that

2
lar,| < Atre (08)

The standard deviation of the random error in determining range from a single
subtense angle measurement is orvYr2 - 1 where o is the standard deviation
of the instrument error. For the ratio of the maximum of |Ar2| to this
quantity to be less than or equal to some number, M requires

2
r3/2 - 1 > HeAt (D9)

20M

The minimum values of r from equation (D9) are plotted in figure 17 for
M = 0.1 and 10 arc seconds, and are discussed in the section on results in the

text.

From equations (D3) and (D7)

titz(ty + t3) p2e sin o

Arg = - 3 3 (3¢ cos 6 + 1) (D10)

Since h = Vurp(l + e) and planet radii are the units of length

h= /u(l + e) (D11)

and since

sin 6(3e cos 6 + 1) = %—e sin 26 + sin ©

(D12)
sin 8(3e cos 9§ + 1) <:§E?;_%
Therefore substituting from equations (D11) and (D12) into (D10) gives
tita(t, + t 372
a5 < |22 3(ty 3)| 13’2 e(3e + 2) 13)
6 r3 2V1 + e

If the interval between t; and tz is 2At then |t;tz(t; + tg)] is maximum if
t; = -At(l £ 1/¥3) so that

tit3(t; + t3)
6

3
9v3

|
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then

At3 132 e(3e + 2)

A < Aat-
brs] <5 T 2 (D14)

Dividing equation (D14) by (D8) gives the ratio of the maximum value of |Ar3|
to the maximum value of |Ar,| as

IArslmax - 2V 3e + 2 At
lAr2|max 9/3 Vi + e T

The third-order term can be consid-
ered negligible if this ratio does

5 w00 DOt exceed 0.1, which requires
=3 e=5.0
£ o> 200 (36 + 2 (D15)
s2 020 9/3 vVl + e
| 1 1 | —

The minimum values of r for various
At, min values of e and At, using w for
the Earth, are plotted in figure 19.
All these values are considerably
smaller than the corresponding ones
Figure 19.- Minimum radius for neglecting third-order term for lAr2 l < Moy, thus indicating that
in analyzing error due to linear interpolation of radius.  the second-order error term is a
valid approximation for the total
interpolation error.

[@]
o
ES
)

Linear Interpolation of Star-Limb Angles

In this section of the appendix sets of equations similar to (D14) and
(D15) are derived for the case where linear interpolation is used with a star-
limb angle instead of r. For this purpose it is convenient to deal with the
star-center angle Y at first. The error in position due to errors in Y
and yo is normal to the radius vector and can be shown from equation (C20) to
be

r dul2 + d“'122 + du32 = -I‘ '/d‘plz + dw22 - 2dy, dy, cos B

sin B

For simplicity interpolation will be assumed for only one angle (y; or ¥,) at
a time and Ay will be the interpolation error. Then
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r/du; 2 + duy? + dug? = LAY (D16)

sin B

Since actually <y instead of ¢ 1s interpolated, the "interpolated' value @
of ¢(tp) can be written

Aty (t) -ty (ty)
b= = és - ti 3= + KS(ty) (p17)

Equation (D17) can be written

¥ =¥ - kS + kS(tp)
where
- tap(ty) - tiv(ts)
tz - t)
and
5. t.S(ty) - t;S(ty)

t3 -t

It can be seen that ¢ and S are the values of y{t,) and S(t,) obtained by
linear interpolation and

M = % - U(t) = [ - w(ta)] - kIS - S(t)]
is the difference of the errors in interpolating ¢ and S. Furthermore,

lap] < |9 - w(ta)] + |5 - S(t2)] (D18)
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The second term can be evaluated directly by means of a Taylor series
expansion, but the first term requires an indirect approach. For this purpose,
define ¢ with different geometric equations from those used in the text as
illustrated by sketch (e). The X-Y plane is the orbital plane of the

Z
A

Star

Planet center
(180°- o)

{180°- )

A8
Spacecraft

Sketch (e)

spacecraft with the origin at the center of the planet and X axis at peri-
apsis. The star-spacecraft angle is the compliment of the star-center angle,
¥, defined in the text, and the elevation angle of the star above the orbital
plane is defined as (180° - yo). Note that ¢, is the minimum value attained
by ¢ during a complete orbit. The angle 6 is the true anomaly of the
spacecraft, while A8 is the change in true anomaly from the spacecraft's
position to the projection of the star on the orbital plane.

For spherical trigonometry
cos (180° - ) = cos(180° - y,)cos A8
which can be reduced to
cos Y = cos Y, cos A6 (D19)
we can write
bbb
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so that if the time interval is small enough for 6 to be assumed constant,

then A8 can be used as the independent variable instead of time. The mini-
mum value of r for which this approximation is valid is found by expanding

A® in a Taylor series to give

2%
At€8,
2:

A8 = ABg + At + + .

and requiring that the second-order term be less than 10 percent of the first
order.

If the trajectory is assumed conic

. h YT, (1 + e)
b= - —P— (D20)
§ = - 2He sin 6 =" ° (21)

then setting Tp equal to one planet radius and [sin e[ to unity gives

lat2(8/2)| « _Yu e
[ate| 1+ o

The minimum value of r for this ratio to be less than one tenth is given by

> 10/ eAt
Y1l + e

e=100 the resulting value of rpip 1s
plotted in figure 20 for various
values of r and e wusing a
geocentric orbit.

e=50

- If r 1is assumed to be greater

- than the minimum values in figure 20,
then A6 can be used as the indepen-

e=20 dent variable for interpolating .

f muno Planet radii
o
T

es10 it is impractical to use a Taylor
I ’////////////////”—ﬁos series, and we make further simplifi-
- —— cations by considering the plot

(obtained from eq. (D19)) of ¥ as a

1 1 i U
0 t 2 3

»H
o —

Figure 20.- Minimum radius for assuming 6 constant.
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function of A6, shown in figure 21. It can be seen from the two examples

linear interpolation in this figure that the maximum interpolation error
occurs when the epoch t, 1is at the center of the time interval and
A8 (tp) = 0. Under these conditions Y(ty) = Yo, -A6(t;) = A6(t3) = A6,

¥, degrees

90 ¥o=90°

80

Values of ¢ from
linear interpolation

Correct values of y

| 1 I l | 1 | | | | 1 | ] J
-90 -80 -70 -60 -50 -40 -30 -20 -iI0 O 0 20 30 40 50 60 70 80 90
A8, deg

Figure 21.- Variation of ¢ with A8 and Y, with two examples of linear interpolation.
@ = ¥(t1) = Y(t3) and t3 = -t; = At. Therefore from equation (D19)
cos J = cos P, cos AB
and since
cos Y(ty) = cos Yq
then
cos @ - cos Y(tz) = -cos P,(1 - cos AB)

and from trigonometry

~ . @ + Yo . @ - ¥
cos Y - cos wo = -2 sin —— ) sin\——=—

From equation (D19) ¢ =y, for A6 < 90° so that

v+ Y
sin <z—o> = sin b,

of

(D22)

(D23)
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Therefore, combining equations (D22) and (D23) gives

2 sin (EL%—E9)=< ctn Yo(l - cos AB)

or

bo- v
sin (——2—2> < ctn g sin? % (D24)

For the fastest orbit considered (u = 1.54XI0_6, r, =1 and e = 10) it
can be shown that the change in true anomaly from perigee in 5 minutes is

about 0.89 radian. Since A46/2 < 0.445 radian, it is reasonable to make the
approximation that

sin._.zﬁ
2 2

and from figure 21

then

. v - wo ~ @ - Yo
sin > >
these approximations reduce equation (D24) to

~ ~ \ 2
9 - vl = 19 - wita) | < 5= ctn g,

and if r is less than the appropriate minimum value from figure 19

~ 62 At?
o - w(t2)] <;—-—§——'Ctn Vo

We can replace 62 with h2/r* and eliminate h by using equation (D4) to
get

p(l + e cos 8)

52 =
r3
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so that

p(l + e)at? ctn Vo

[ - w(t2)| < 3 (D25)
T
Now consider the second term in equation (D18), [§ - S(tz)l. By
definition
5 - tgS(t;) - t,5(ty)
ty3 - Ty
and we can expand S(t;) and S(t3) in a Taylor series about t, to give
~ tity .. titg(ty + tg) ..
S - S(tz) = —5=S(tp) + 3 S(tp) + .
It was shown in the section on the linear interpolation of r that
titg(ty + t3) _ 2a¢3
6 =
9v3

and

tltg At2

R A =L

2 2
so that
~ At2 . 28t3 e
IS - S(t2)| <= |S(ta)]| + [Sce) ]+ o (D26)

We wish to be able to approximate |§ - S(tp)| by the second-order term and
therefore find the minimum value of r for which the maximum magnitude of the
third-order term does not exceed 10 percent of the second-order one. By
definition

sin S = 1/t

where the equation has been normalized by using planet radii as units of
length. Differentiation gives

S = - sin S tan S

S=-7sin S tan S - St sin S(1 + sec? S)
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or, substituting for §
S=-Tsin$S tan S + 2 sin? S tan S(1 + sec2 S)
Differentiating and substituting for S gives
S = -sin S tan S[r - 31T sin S(1 + sec? §)
+13 sin2 S(2 + sec? S + 3 sec* 9)]

Substitution of the derivatives of r from equations (D5), (D6), and (D7)
gives

2 :
S = sin S tan S pTe sin © (32 cos & + 1)
hr3
2,2 <3
. 3u“e“ sin 6 cos O sin S(1 + sec2 s)

hr?

_ 2u3ed sin3d o
h3

sin? S(2 + sec?2 S + 3 sec* S)}
and substitution for sin B and tan S wusing the definition of sin S gives

(1 + sec? S)

§ 2 p?e sin 6 [Se cos 6 + 1 _ 3e cos 6

hr3vr2 - 1 T T

_ ue? sin? 6

2 (2 + sec2 S + 4 sect S)]

Substituting from (D4) for r inside the bracket and from (D12) for h gives

3/2
|s|=<-—_E——12§Fz r3/r2 - 1 |sin 6[1 + e cos 6(7 + 3 sec? S]|
(1 + e)

+e2 cos? 9(6 + 3 sec? S) - e2 sin? 6(2 + sec? S + 3 sec* S)| (D27)

Substitution for r, sin S, tan S, and h in the expression for S gives
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|51< =

(1 + e)r2/r? - 1

e sin? 6(1 + sec?2 S) - e cos? 6 - cos 6
or

S| < He e(l + sec?2 S) - e(2 + sec? S)cos?2 6 - cos O D28
II\(1+e)r2/13T—l_|( ) - e ) I (D28)

We can rewrite (D27) and (D28) as
r3/r2 - 1 (D29)
and

15| <G 242 (D30)

where F and G are defined as the maximum magnitudes of the terms in the
absolute value signs. In order for the maximum magnitude of the third-order

term in equation (D26) to be less than 10 percent of that of the second-order
term

1/2
r>—41“—%m; (D31)
9/3 V1 + e

The values of F and G depend on 6 and sec? S as well as e, and successive
approximations were used to find their values for various values of e and At.
0~ The resulting values of rp;, are
plotted in figure 22 for geocentric
orbits as functions of At for
various values of e. If r 1is

larger than these values and those in

e=100

g e=5.0 figure 20, equations (D25), (D26),
g5 20 and (D30) combine to give
£ e=l0 At?2 fu(l + @)
<
=05 IAwl =72 [ r3 ctn yo
//__9:02

At, min + ueG }

(1 + e)r2vr? - 1

o
™~
]
N
oL

Figure 22.- Minimum radius for neglecting third-order term
in analyzing error due to linear interpolation of
subtense angle.
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This expression can be used with (D16) to show that the upper bound on the
position error T due to the interpolation of vy is given by

~ T At2(1 + e At2eG
17l <53 [u ( 3 L ctn Yo * E ] (D32)
2r 2(1 + e)r2vr? - 1

This error is compared with Vorz + °n2 for type 5 since it has been

found (see the section on results in the text) that this quantity is usually
smaller for type 5 than for type 4. From equations (C42) and (C43)

2 2
re - 1 3 1 re -1
(0'1.2 + O'nz) = I‘20'2{<——2——> + E— + sin2 B [( 2 ) Ctn2 ll)].

kovr? - 1 ctn §; + kiky 3
— S cos B Ay

+

Note that it has been assumed that oy = og = ¢ and that if ¢, 1s inter-
polated instead of ;, it would replace ¥; in the equation and kj; and kj
would be interchanged. From this equation it is seen that dropping the sub-
script on ¢, that

2 sin? B 4 sin? B

2 J/r2 - (r? - 1)ctn?
Or2 + cn2 ;zrzcz[(r + 2, 32 > L Yr 1 ctn y ) ¢1}
B

2 4 sin

This expression is of the form
(0p2 + 0,%) = 1202(C12 ctn? ¢ + 2Cp ctn P + C32)
and from equation (D32)
|#]2 = r2(D12 ctn? y + 2D1D3 ctn Y + D3?)

Therefore if the maximum magnitude of interpolation error is to be less than
M times the maximum of Vo2 + onz

82



Substituting for the Dj and Cj gives

2 AN
nat %e—)< Movr2 - 1 (D33)
2p4l —
H AE~EE—-<ZM202/}2 -1 (D34)
rov/re - 1
2 2 ,
wateG ____ o4p B<Mo/r t2 ., 5 (D35)
2 4 sin? B

2ﬂ-+ehzﬁz—l

It can be shown that if the first condition is satisfied, the second will also
be, and only the first and last conditions will be considered.

The minimum values of r, using u for the Earth and 10 arc seconds for
o, for the two conditions were computed for each case and the largest taken as
Tmin- These values of rp;, are plotted in figure 18 for two different
values of sin B. The value of 1pin from equation (D35) goes to zero with
e so that for the smaller values of e the value of rpin from (D33) is the
larger and the curves do not change with sin B. For the larger values of e
the errors increase rapidly as sin B decreases, and for very small values of
sin B the interpolation error would become very large compared to the measure-
ment error. However, the measurement error is also large in this region and
such measurements would be avoided.

Note that the values of 1ryjp 1in figure 18 are always greater than the
corresponding values in figures 20 and 22, so that the second-order terms used
in obtaining the curves of figure 18 are valid measures of the error. The
curves in figure 18 are discussed further in the text.
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